Show simple item record

dc.contributor.authorPillai, Sudeep
dc.contributor.authorLeonard, John Joseph
dc.date.accessioned2015-07-28T18:07:47Z
dc.date.available2015-07-28T18:07:47Z
dc.date.issued2015-07
dc.identifier.issn2330-765X
dc.identifier.urihttp://hdl.handle.net/1721.1/97907
dc.description.abstractIn this work, we develop a monocular SLAM-aware object recognition system that is able to achieve considerably stronger recognition performance, as compared to classical object recognition systems that function on a frame-by-frame basis. By incorporating several key ideas including multi-view object proposals and efficient feature encoding methods, our proposed system is able to detect and robustly recognize objects in its environment using a single RGB camera in near-constant time. Through experiments, we illustrate the utility of using such a system to effectively detect and recognize objects, incorporating multiple object viewpoint detections into a unified prediction hypothesis. The performance of the proposed recognition system is evaluated on the UW RGB-D Dataset, showing strong recognition performance and scalable run-time performance compared to current state-of-the-art recognition systems.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant MURI N00014-10-1-0936)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-11-1-0688)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-13-1-0588)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award IIS-1318392)en_US
dc.language.isoen_US
dc.relation.isversionofhttp://www.roboticsproceedings.org/rss11/p34.htmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceRobotics Proceedingsen_US
dc.titleMonocular SLAM Supported Object Recognitionen_US
dc.typeArticleen_US
dc.identifier.citationPillai, Sudeep, and John J. Leonard. "Monocular SLAM Supported Object Recognition." 2015 Robotics: Science and Systems Conference (July 2015).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorPillai, Sudeepen_US
dc.contributor.mitauthorLeonard, John Josephen_US
dc.relation.journalProceedings of the 2015 Robotics: Science and Systems Conferenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsPillai, Sudeep; Leonard, John J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8863-6550
dc.identifier.orcidhttps://orcid.org/0000-0001-7198-1772
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record