Show simple item record

dc.contributor.authorDemanet, Laurent
dc.contributor.authorLetourneau, Pierre-David
dc.contributor.authorBoumal, Nicolas
dc.contributor.authorCalandra, Henri
dc.contributor.authorChiu, Jiawei
dc.contributor.authorSnelson, Stanley
dc.date.accessioned2015-09-17T17:32:07Z
dc.date.available2015-09-17T17:32:07Z
dc.date.issued2011-03
dc.date.submitted2011-01
dc.identifier.issn10635203
dc.identifier.issn1096-603X
dc.identifier.urihttp://hdl.handle.net/1721.1/98539
dc.description.abstractThis paper considers the problem of approximating the inverse of the wave-equation Hessian, also called normal operator, in seismology and other types of wave-based imaging. An expansion scheme for the pseudodifferential symbol of the inverse Hessian is set up. The coefficients in this expansion are found via least-squares fitting from a certain number of applications of the normal operator on adequate randomized trial functions built in curvelet space. It is found that the number of parameters that can be fitted increases with the amount of information present in the trial functions, with high probability. Once an approximate inverse Hessian is available, application to an image of the model can be done in very low complexity. Numerical experiments show that randomized operator fitting offers a compelling preconditioner for the linearized seismic inversion problem.en_US
dc.description.sponsorshipTOTAL (Firm)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.acha.2011.03.006en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleMatrix probing: A randomized preconditioner for the wave-equation Hessianen_US
dc.typeArticleen_US
dc.identifier.citationDemanet, Laurent, Pierre-David Letourneau, Nicolas Boumal, Henri Calandra, Jiawei Chiu, and Stanley Snelson. “Matrix Probing: A Randomized Preconditioner for the Wave-Equation Hessian.” Applied and Computational Harmonic Analysis 32, no. 2 (March 2012): 155–68.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorDemanet, Laurenten_US
dc.contributor.mitauthorChiu, Jiaweien_US
dc.relation.journalApplied and Computational Harmonic Analysisen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDemanet, Laurent; Letourneau, Pierre-David; Boumal, Nicolas; Calandra, Henri; Chiu, Jiawei; Snelson, Stanleyen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7052-5097
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record