Show simple item record

dc.contributor.authorHosur, Raghavendra
dc.contributor.authorXu, Jinbo
dc.contributor.authorBerger, Bonnie
dc.contributor.authorBienkowska, Jadwiga R.
dc.date.accessioned2015-09-17T17:56:44Z
dc.date.available2015-09-17T17:56:44Z
dc.date.issued2010-12
dc.date.submitted2010-11
dc.identifier.issn00222836
dc.identifier.issn1089-8638
dc.identifier.urihttp://hdl.handle.net/1721.1/98591
dc.description.abstractCurrent homology modeling methods for predicting protein–protein interactions (PPIs) have difficulty in the “twilight zone” (< 40%) of sequence identities. Threading methods extend coverage further into the twilight zone by aligning primary sequences for a pair of proteins to a best-fit template complex to predict an entire three-dimensional structure. We introduce a threading approach, iWRAP, which focuses only on the protein interface. Our approach combines a novel linear programming formulation for interface alignment with a boosting classifier for interaction prediction. We demonstrate its efficacy on SCOPPI, a classification of PPIs in the Protein Databank, and on the entire yeast genome. iWRAP provides significantly improved prediction of PPIs and their interfaces in stringent cross-validation on SCOPPI. Furthermore, by combining our predictions with a full-complex threader, we achieve a coverage of 13% for the yeast PPIs, which is close to a 50% increase over previous methods at a higher sensitivity. As an application, we effectively combine iWRAP with genomic data to identify novel cancer-related genes involved in chromatin remodeling, nucleosome organization, and ribonuclear complex assembly. iWRAP is available at http://iwrap.csail.mit.edu.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1R01GM081871)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jmb.2010.11.025en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleiWRAP: An Interface Threading Approach with Application to Prediction of Cancer-Related Protein–Protein Interactionsen_US
dc.typeArticleen_US
dc.identifier.citationHosur, Raghavendra, Jinbo Xu, Jadwiga Bienkowska, and Bonnie Berger. “iWRAP: An Interface Threading Approach with Application to Prediction of Cancer-Related Protein–Protein Interactions.” Journal of Molecular Biology 405, no. 5 (February 2011): 1295–1310.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorHosur, Raghavendraen_US
dc.contributor.mitauthorXu, Jinboen_US
dc.contributor.mitauthorBienkowska, Jadwiga R.en_US
dc.contributor.mitauthorBerger, Bonnieen_US
dc.relation.journalJournal of Molecular Biologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHosur, Raghavendra; Xu, Jinbo; Bienkowska, Jadwiga; Berger, Bonnieen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2598-3552
dc.identifier.orcidhttps://orcid.org/0000-0002-2724-7228
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record