A tractable analytical model for large-scale congested protein synthesis networks
Author(s)
Bierlaire, Michel; Osorio Pizano, Carolina
DownloadOsorio_A Tractable.pdf (200.2Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
This paper presents an analytical model, based on finite capacity queueing network theory, to evaluate congestion in protein synthesis networks. These networks are modeled as a set of single server bufferless queues in a tandem topology. This model proposes a detailed state space formulation, which provides a fine description of congestion and contributes to a better understanding of how the protein synthesis rate is deteriorated. The model approximates the marginal stationary distributions of each queue. It consists of a system of linear and quadratic equations that can be decoupled. The numerical performance of this method is evaluated for networks with up to 100,000 queues, considering scenarios with various levels of congestion. It is a computationally efficient and scalable method that is suitable to evaluate congestion for large-scale networks. Additionally, this paper generalizes the concept of blocking: blocking events can be triggered by an arbitrary set of queues. This generalization allows for a variety of blocking phenomena to be modeled.
Date issued
2011-11Department
Massachusetts Institute of Technology. Department of Civil and Environmental EngineeringJournal
European Journal of Operational Research
Publisher
Elsevier
Citation
Osorio, Carolina, and Michel Bierlaire. “A Tractable Analytical Model for Large-Scale Congested Protein Synthesis Networks.” European Journal of Operational Research 219, no. 3 (June 2012): 588–597.
Version: Author's final manuscript
ISSN
03772217