Show simple item record

dc.contributor.authorSpeth, Raymond L.
dc.contributor.authorGhoniem, Ahmed F.
dc.contributor.authorHong, Seung hyuck
dc.contributor.authorShanbhogue, Santosh
dc.date.accessioned2015-09-22T12:10:36Z
dc.date.available2015-09-22T12:10:36Z
dc.date.issued2013-03
dc.date.submitted2013-01
dc.identifier.issn00102180
dc.identifier.urihttp://hdl.handle.net/1721.1/98853
dc.description.abstractIn this paper, we experimentally investigate the combustion dynamics in lean premixed flames in a laboratory scale backward-facing step combustor in which flame-vortex driven dynamics are observed. A series of tests was conducted using propane/hydrogen/air mixtures for various mixture compositions at the inlet temperature ranging from 300 K to 500 K and at atmospheric pressure. Pressure measurements and high speed particle image velocimetry (PIV) are used to generate pressure response curves and phase-averaged vorticity and streamlines as well as the instantaneous flame front, respectively, which describe unsteady flame and flow dynamics in each operating regime. This work was motivated in part by our earlier study where we showed that the strained flame consumption speed S[subscript c] can be used to collapse the pressure response curves over a wide range of operating conditions. In previous studies, the stretch rate at which S[subscript c] was computed was determined by trial and error. In this study, flame stretch is estimated using the instantaneous flame front and velocity field from the PIV measurement. Independently, we also use computed strained flame speed and the experimental data to determine the characteristic values of stretch rate near the mode transition points at which the flame configuration changes. We show that a common value of the characteristic stretch rate exists across all the flame configurations. The consumption speed computed at the characteristic stretch rate captures the impact of different operating parameters on the combustor dynamics. These results suggest that the unsteady interactions between the turbulent flow and the flame dynamics can be encapsulated in the characteristic stretch rate, which governs the critical flame speed at the mode transitions and thereby plays an important role in determining the stability characteristics of the combustor.en_US
dc.description.sponsorshipKing Abdullah University of Science and Technology (Grant KUS-110-010-01)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.combustflame.2013.02.016en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleExamining flow-flame interaction and the characteristic stretch rate in vortex-driven combustion dynamics using PIV and numerical simulationen_US
dc.typeArticleen_US
dc.identifier.citationHong, Seunghyuck, Raymond L. Speth, Santosh J. Shanbhogue, and Ahmed F. Ghoniem. “Examining Flow-Flame Interaction and the Characteristic Stretch Rate in Vortex-Driven Combustion Dynamics Using PIV and Numerical Simulation.” Combustion and Flame 160, no. 8 (August 2013): 1381–97.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorGhoniem, Ahmed F.en_US
dc.contributor.mitauthorHong, Seung hyucken_US
dc.contributor.mitauthorSpeth, Raymond L.en_US
dc.contributor.mitauthorShanbhogue, Santoshen_US
dc.relation.journalCombustion and Flameen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHong, Seunghyuck; Speth, Raymond L.; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6166-7613
dc.identifier.orcidhttps://orcid.org/0000-0001-8730-272X
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record