Show simple item record

dc.contributor.authorNanni, Emilio Alessandro
dc.contributor.authorBarnes, Alexander B.
dc.contributor.authorMatsuki, Yoh
dc.contributor.authorWoskov, Paul P.
dc.contributor.authorTemkin, Richard J.
dc.contributor.authorCorzilius, Bjorn
dc.contributor.authorGriffin, Robert Guy
dc.date.accessioned2015-09-22T15:52:38Z
dc.date.available2015-09-22T15:52:38Z
dc.date.issued2011-03
dc.date.submitted2011-02
dc.identifier.issn10907807
dc.identifier.issn1096-0856
dc.identifier.urihttp://hdl.handle.net/1721.1/98862
dc.description.abstractWe present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B[subscript 1S]) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4 mm diameter sapphire rotor containing the sample. The predicted average B[subscript 1S] field is 13 μT/W[superscript 1/2], where S denotes the electron spin. For a routinely achievable input power of 5 W the corresponding value is γ[subscript S]B[subscript 1S] = 0.84 MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement (ϵ) vs. ω[subscript 1S]/(2π) for a sample of [superscript 13]C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant EB002804)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant EB003151)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant EB002026)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant EB001960)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant EB001035)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant EB004866)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowshipen_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jmr.2011.02.001en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleMicrowave field distribution in a magic angle spinning dynamic nuclear polarization NMR probeen_US
dc.typeArticleen_US
dc.identifier.citationNanni, Emilio A., Alexander B. Barnes, Yoh Matsuki, Paul P. Woskov, Björn Corzilius, Robert G. Griffin, and Richard J. Temkin. “Microwave Field Distribution in a Magic Angle Spinning Dynamic Nuclear Polarization NMR Probe.” Journal of Magnetic Resonance 210, no. 1 (May 2011): 16–23.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Centeren_US
dc.contributor.departmentFrancis Bitter Magnet Laboratory (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorNanni, Emilio Alessandroen_US
dc.contributor.mitauthorBarnes, Alexander B.en_US
dc.contributor.mitauthorMatsuki, Yohen_US
dc.contributor.mitauthorWoskov, Paul P.en_US
dc.contributor.mitauthorCorzilius, Bjornen_US
dc.contributor.mitauthorGriffin, Robert Guyen_US
dc.contributor.mitauthorTemkin, Richard J.en_US
dc.relation.journalJournal of Magnetic Resonanceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsNanni, Emilio A.; Barnes, Alexander B.; Matsuki, Yoh; Woskov, Paul P.; Corzilius, Björn; Griffin, Robert G.; Temkin, Richard J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1589-832X
dc.identifier.orcidhttps://orcid.org/0000-0002-1148-9345
dc.identifier.orcidhttps://orcid.org/0000-0001-9813-0177
dspace.mitauthor.errortrue
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record