Show simple item record

dc.contributor.authorIshimatsu, Takuto
dc.contributor.authorde Weck, Olivier L.
dc.contributor.authorHoffman, Jeffrey A.
dc.contributor.authorOhkami, Yoshiaki
dc.contributor.authorShishko, Robert
dc.date.accessioned2015-10-19T12:51:41Z
dc.date.available2015-10-19T12:51:41Z
dc.date.issued2015-10-19
dc.identifier.issn0022-4650
dc.identifier.issn1533-6794
dc.identifier.urihttp://hdl.handle.net/1721.1/99360
dc.description.abstractSimple logistics strategies such as "carry-along" and Earth-based "resupply" were sufficient for past human space programs. Next-generation space logistics paradigms are expected to be more complex, involving multiple exploration destinations and in-situ resource utilization (ISRU). Optional ISRU brings additional complexity to the interplanetary supply chain network design problem. This paper presents an interdependent network flow modeling method for determining optimal logistics strategies for space exploration and its application to the human exploration of Mars. It is found that a strategy utilizing lunar resources in the cislunar network may improve overall launch mass to low Earth orbit for recurring missions to Mars compared to NASA’s Mars Design Reference Architecture 5.0, even when including the mass of the ISRU infrastructures that need to be pre-deployed. Other findings suggest that chemical propulsion using LOX/LH[subscript 2], lunar ISRU water production, and the use of aerocapture significantly contribute to reducing launch mass from Earth. A sensitivity analysis of ISRU reveals that under the given assumptions, local lunar resources become attractive at productivity levels above 1.8 kg/year/kg in the context of future human exploration of Mars.en_US
dc.description.sponsorshipJet Propulsion Laboratory (U.S.). Strategic University Research Partnerships Programen_US
dc.language.isoen_US
dc.publisherAmerican Institute of Aeronautics and Astronauticsen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleA Generalized Multi-Commodity Network Flow Model for the Earth-Moon-Mars Logistics Systemen_US
dc.typeArticleen_US
dc.identifier.citationIshimatsu, Takuto, Olivier L. de Weck, Jeffrey A. Hoffman, Yoshiaki Ohkami, and Robert Shishko. "A Generalized Multi-Commodity Network Flow Model for the Earth-Moon-Mars Logistics System." Forthcoming in the Journal of Spacecraft and Rocketsen_US
dc.contributor.departmentMIT Institute for Data, Systems, and Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Divisionen_US
dc.contributor.mitauthorIshimatsu, Takutoen_US
dc.contributor.mitauthorde Weck, Olivier L.en_US
dc.contributor.mitauthorHoffman, Jeffrey A.en_US
dc.relation.journalforthcoming in the Journal of Spacecraft and Rocketsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsIshimatsu, Takuto; de Weck, Olivier L.; Hoffman, Jeffrey A.; Ohkami, Yoshiaki; Shishko, Roberten_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6677-383X
dc.identifier.orcidhttps://orcid.org/0000-0002-7543-6920
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record