Show simple item record

dc.contributor.authorWalther, Jason L.
dc.contributor.authorMetallo, Christian M.
dc.contributor.authorZhang, Jie
dc.contributor.authorStephanopoulos, Gregory
dc.date.accessioned2015-10-21T16:29:46Z
dc.date.available2015-10-21T16:29:46Z
dc.date.issued2011-12
dc.date.submitted2011-12
dc.identifier.issn10967176
dc.identifier.issn1096-7184
dc.identifier.urihttp://hdl.handle.net/1721.1/99396
dc.description.abstractMammalian cells consume and metabolize various substrates from their surroundings for energy generation and biomass synthesis. Glucose and glutamine, in particular, are the primary carbon sources for proliferating cancer cells. While this combination of substrates generates static labeling patterns for use in [superscript 13]C metabolic flux analysis (MFA), the inability of single tracers to effectively label all pathways poses an obstacle for comprehensive flux determination within a given experiment. To address this issue we applied a genetic algorithm to optimize mixtures of [superscript 13]C-labeled glucose and glutamine for use in MFA. We identified tracer combinations that minimized confidence intervals in an experimentally determined flux network describing central carbon metabolism in tumor cells. Additional simulations were used to determine the robustness of the [1,2-[superscript 13]C[subscript 2]]glucose/[U-[superscript 13]C[subscript 5]]glutamine tracer combination with respect to perturbations in the network. Finally, we experimentally validated the improved performance of this tracer set relative to glucose tracers alone in a cancer cell line. This versatile method allows researchers to determine the optimal tracer combination to use for a specific metabolic network, and our findings applied to cancer cells significantly enhance the ability of MFA experiments to precisely quantify fluxes in higher organisms.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1R01 DK075850-01)en_US
dc.description.sponsorshipAmerican Cancer Society (Postdoctoral Fellowship)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.ymben.2011.12.004en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleOptimization of [superscript 13]C isotopic tracers for metabolic flux analysis in mammalian cellsen_US
dc.typeArticleen_US
dc.identifier.citationWalther, Jason L., Christian M. Metallo, Jie Zhang, and Gregory Stephanopoulos. “Optimization of [superscript 13]C Isotopic Tracers for Metabolic Flux Analysis in Mammalian Cells.” Metabolic Engineering 14, no. 2 (March 2012): 162–171.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.mitauthorWalther, Jason L.en_US
dc.contributor.mitauthorMetallo, Christian M.en_US
dc.contributor.mitauthorZhang, Jieen_US
dc.contributor.mitauthorStephanopoulos, Gregoryen_US
dc.relation.journalMetabolic Engineeringen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWalther, Jason L.; Metallo, Christian M.; Zhang, Jie; Stephanopoulos, Gregoryen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6909-4568
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record