Show simple item record

dc.contributor.authorFelder, Giovanni
dc.contributor.authorMa, Xiaoguang
dc.contributor.authorVeselov, Alexander
dc.contributor.authorEtingof, Pavel I.
dc.date.accessioned2015-10-23T18:24:41Z
dc.date.available2015-10-23T18:24:41Z
dc.date.issued2010-04
dc.date.submitted2010-03
dc.identifier.issn00218693
dc.identifier.issn1090-266X
dc.identifier.urihttp://hdl.handle.net/1721.1/99442
dc.description.abstractTo every irreducible finite crystallographic reflection group (i.e., an irreducible finite reflection group G acting faithfully on an abelian variety X), we attach a family of classical and quantum integrable systems on X (with meromorphic coefficients). These families are parametrized by G -invariant functions of pairs (T,s), where T is a hypertorus in X (of codimension 1), and s∈G is a reflection acting trivially on T. If G is a real reflection group, these families reduce to the known generalizations of elliptic Calogero–Moser systems, but in the non-real case they appear to be new. We give two constructions of the integrals of these systems – an explicit construction as limits of classical Calogero–Moser Hamiltonians of elliptic Dunkl operators as the dynamical parameter goes to 0 (implementing an idea of V. Buchstaber, G. Felder and A. Veselov (1994) [BFV]), and a geometric construction as global sections of sheaves of elliptic Cherednik algebras for the critical value of the twisting parameter. We also prove algebraic integrability of these systems for values of parameters satisfying certain integrality conditions.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0504847)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0854764)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jalgebra.2010.04.011en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceArxiven_US
dc.titleOn elliptic Calogero–Moser systems for complex crystallographic reflection groupsen_US
dc.typeArticleen_US
dc.identifier.citationEtingof, Pavel, Giovanni Felder, Xiaoguang Ma, and Alexander Veselov. “On Elliptic Calogero–Moser Systems for Complex Crystallographic Reflection Groups.” Journal of Algebra 329, no. 1 (March 2011): 107–129.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorEtingof, Pavel I.en_US
dc.contributor.mitauthorMa, Xiaoguangen_US
dc.relation.journalJournal of Algebraen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsEtingof, Pavel; Felder, Giovanni; Ma, Xiaoguang; Veselov, Alexanderen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0710-1416
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record