Show simple item record

dc.contributor.authorHuan, Xun
dc.contributor.authorMarzouk, Youssef M.
dc.date.accessioned2015-10-27T14:14:35Z
dc.date.available2015-10-27T14:14:35Z
dc.date.issued2012-09
dc.date.submitted2012-08
dc.identifier.issn00219991
dc.identifier.issn1090-2716
dc.identifier.urihttp://hdl.handle.net/1721.1/99467
dc.description.abstractThe optimal selection of experimental conditions is essential to maximizing the value of data for inference and prediction, particularly in situations where experiments are time-consuming and expensive to conduct. We propose a general mathematical framework and an algorithmic approach for optimal experimental design with nonlinear simulation-based models; in particular, we focus on finding sets of experiments that provide the most information about targeted sets of parameters. Our framework employs a Bayesian statistical setting, which provides a foundation for inference from noisy, indirect, and incomplete data, and a natural mechanism for incorporating heterogeneous sources of information. An objective function is constructed from information theoretic measures, reflecting expected information gain from proposed combinations of experiments. Polynomial chaos approximations and a two-stage Monte Carlo sampling method are used to evaluate the expected information gain. Stochastic approximation algorithms are then used to make optimization feasible in computationally intensive and high-dimensional settings. These algorithms are demonstrated on model problems and on nonlinear parameter inference problems arising in detailed combustion kinetics.en_US
dc.description.sponsorshipKing Abdullah University of Science and Technology (Global Research Partnership)en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Advanced Scientific Computing Research (Grant DE-SC0003908)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jcp.2012.08.013en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceArxiven_US
dc.titleSimulation-based optimal Bayesian experimental design for nonlinear systemsen_US
dc.typeArticleen_US
dc.identifier.citationHuan, Xun, and Youssef M. Marzouk. “Simulation-Based Optimal Bayesian Experimental Design for Nonlinear Systems.” Journal of Computational Physics 232, no. 1 (January 2013): 288–317.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorHuan, Xunen_US
dc.contributor.mitauthorMarzouk, Youssef M.en_US
dc.relation.journalJournal of Computational Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHuan, Xun; Marzouk, Youssef M.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6544-2764
dc.identifier.orcidhttps://orcid.org/0000-0001-8242-3290
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record