Show simple item record

dc.contributor.authorCurran, Timothy G.
dc.contributor.authorBryson, Bryan D.
dc.contributor.authorReigelhaupt, Michael
dc.contributor.authorJohnson, Hannah
dc.contributor.authorWhite, Forest M.
dc.date.accessioned2015-10-30T17:54:22Z
dc.date.available2015-10-30T17:54:22Z
dc.date.issued2013-03
dc.identifier.issn10462023
dc.identifier.issn1095-9130
dc.identifier.urihttp://hdl.handle.net/1721.1/99530
dc.description.abstractAdvances in mass spectrometry-based proteomic technologies have increased the speed of analysis and the depth provided by a single analysis. Computational tools to evaluate the accuracy of peptide identifications from these high-throughput analyses have not kept pace with technological advances; currently the most common quality evaluation methods are based on statistical analysis of the likelihood of false positive identifications in large-scale data sets. While helpful, these calculations do not consider the accuracy of each identification, thus creating a precarious situation for biologists relying on the data to inform experimental design. Manual validation is the gold standard approach to confirm accuracy of database identifications, but is extremely time-intensive. To palliate the increasing time required to manually validate large proteomic datasets, we provide computer aided manual validation software (CAMV) to expedite the process. Relevant spectra are collected, catalogued, and pre-labeled, allowing users to efficiently judge the quality of each identification and summarize applicable quantitative information. CAMV significantly reduces the burden associated with manual validation and will hopefully encourage broader adoption of manual validation in mass spectrometry-based proteomics.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R24DK090963)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant U54CA112967)en_US
dc.description.sponsorshipNational Cancer Institute (U.S.). Integrative Cancer Biology Program (Fellowship)en_US
dc.description.sponsorshipCharles S. Krakauer Fellowshipen_US
dc.description.sponsorshipHugh Hampton Young Fellowshipen_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.ymeth.2013.03.004en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleComputer aided manual validation of mass spectrometry-based proteomic dataen_US
dc.typeArticleen_US
dc.identifier.citationCurran, Timothy G., Bryan D. Bryson, Michael Reigelhaupt, Hannah Johnson, and Forest M. White. “Computer Aided Manual Validation of Mass Spectrometry-Based Proteomic Data.” Methods 61, no. 3 (June 2013): 219–226.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorCurran, Timothy G.en_US
dc.contributor.mitauthorBryson, Bryan D.en_US
dc.contributor.mitauthorReigelhaupt, Michaelen_US
dc.contributor.mitauthorJohnson, Hannahen_US
dc.contributor.mitauthorWhite, Forest M.en_US
dc.relation.journalMethodsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCurran, Timothy G.; Bryson, Bryan D.; Reigelhaupt, Michael; Johnson, Hannah; White, Forest M.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1545-1651
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record