Show simple item record

dc.contributor.authorConrad, Patrick R.
dc.contributor.authorMarzouk, Youssef M.
dc.contributor.authorPillai, Natesh S.
dc.contributor.authorSmith, Aaron
dc.date.accessioned2015-11-20T12:41:58Z
dc.date.available2015-11-20T12:41:58Z
dc.date.issued2015-10
dc.date.submitted2014-09
dc.identifier.issn0162-1459
dc.identifier.issn1537-274X
dc.identifier.urihttp://hdl.handle.net/1721.1/99937
dc.description.abstractWe construct a new framework for accelerating Markov chain Monte Carlo in posterior sampling problems where standard methods are limited by the computational cost of the likelihood, or of numerical models embedded therein. Our approach introduces local approximations of these models into the Metropolis-Hastings kernel, borrowing ideas from deterministic approximation theory, optimization, and experimental design. Previous efforts at integrating approximate models into inference typically sacrifice either the sampler’s exactness or efficiency; our work seeks to address these limitations by exploiting useful convergence characteristics of local approximations. We prove the ergodicity of our approximate Markov chain, showing that it samples asymptotically from the exact posterior distribution of interest. We describe variations of the algorithm that employ either local polynomial approximations or local Gaussian process regressors. Our theoretical results reinforce the key observation underlying this paper: when the likelihood has some local regularity, the number of model evaluations per MCMC step can be greatly reduced without biasing the Monte Carlo average. Numerical experiments demonstrate multiple order-of-magnitude reductions in the number of forward model evaluations used in representative ODE and PDE inference problems, with both synthetic and real data.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Advanced Scientific Computing Research. Scientific Discovery through Advanced Computing Program (Award DE-SC0007099)en_US
dc.language.isoen_US
dc.publisherAmerican Statistical Associationen_US
dc.relation.isversionofhttp://dx.doi.org/10.1080/01621459.2015.1096787en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleAccelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximationsen_US
dc.typeArticleen_US
dc.identifier.citationConrad, Patrick R., Youssef M. Marzouk, Natesh S. Pillai, and Aaron Smith. “Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations.” Journal of the American Statistical Association (October 21, 2015): 00–00.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.approverMarzouk, Youssef M.en_US
dc.contributor.mitauthorConrad, Patrick R.en_US
dc.contributor.mitauthorMarzouk, Youssef M.en_US
dc.relation.journalJournal of the American Statistical Associationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsConrad, Patrick R.; Marzouk, Youssef M.; Pillai, Natesh S.; Smith, Aaronen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8242-3290
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record