| 1 | Permutations and combinations (PDF) |
| 2 | Multinomial coefficients and more counting (PDF) |
| 3 | Sample spaces and set theory (PDF) |
| 4 | Axioms of probability (PDF) |
| 5 | Probability and equal likelihood (PDF) |
| 6 | Conditional probabilities (PDF) |
| 7 | Bayes' formula and independent events (PDF) |
| 8 | Discrete random variables (PDF) |
| 9 | Expectations of discrete random variables (PDF) |
| 10 | Variance (PDF) |
| 11 | Binomial random variables, repeated trials and the so-called Modern Portfolio Theory (PDF) |
| 12 | Poisson random variables (PDF) |
| 13 | Poisson processes (PDF) |
| 14 | More discrete random variables (PDF) |
| 15 | Continuous random variables (PDF) |
| 16 | Review for Midterm Exam 1 (PDF) |
| 17 | Midterm Exam 1 (No Lecture) |
| 18 | Uniform random variables (PDF) |
| 19 | Normal random variables (PDF) |
| 20 | Exponential random variables (PDF) |
| 21 | More continuous random variables (PDF) |
| 22 | Joint distribution functions (PDF) |
| 23 | Sums of independent random variables (PDF) |
| 24 | Expectation of sums (PDF) |
| 25 | Covariance (PDF) |
| 26 | Conditional expectation (PDF) |
| 27 | Moment generating distributions (PDF) |
| 28 | Review for Midterm Exam 2 (PDF) |
| 29 | Midterm Exam 2 (No Lecture) |
| 30 | Weak law of large numbers (PDF) |
| 31 | Central limit theorem (PDF) |
| 32 | Strong law of large numbers and Jensen's inequality (PDF) |
| 33 | Markov chains (PDF) |
| 34 | Entropy (PDF) |
| 35 | Martingales and the Optional Stopping Time Theorem (PDF) |
| 36 | Risk Neutral Probability and Black-Scholes (PDF) |
| 37 | Review for Final Exam (PDF) |
| 38 | Review for Final Exam (PDF) |
| 39 | Review for Final Exam (PDF) |
| 40 | Final Exam (No Lecture) |