MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simultaneous Alignment and Folding of Protein Sequences

Author(s)
O'Donnell, Charles William; Will, Sebastian; Devadas, Srinivas; Backofen, Rolf; Berger, Bonnie; Waldispuhl, Jerome; ... Show more Show less
Thumbnail
DownloadDevadas_Simultaneous alignment.pdf (399.7Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Accurate comparative analysis tools for low-homology proteins remains a difficult challenge in computational biology, especially sequence alignment and consensus folding problems. We present partiFold-Align, the first algorithm for simultaneous alignment and consensus folding of unaligned protein sequences; the algorithm's complexity is polynomial in time and space. Algorithmically, partiFold-Align exploits sparsity in the set of super-secondary structure pairings and alignment candidates to achieve an effectively cubic running time for simultaneous pairwise alignment and folding. We demonstrate the efficacy of these techniques on transmembrane β-barrel proteins, an important yet difficult class of proteins with few known three-dimensional structures. Testing against structurally derived sequence alignments, partiFold-Align significantly outperforms state-of-the-art pairwise and multiple sequence alignment tools in the most difficult low-sequence homology case. It also improves secondary structure prediction where current approaches fail. Importantly, partiFold-Align requires no prior training. These general techniques are widely applicable to many more protein families (partiFold-Align is available at http://partifold.csail.mit.edu/).
Date issued
2014-04
URI
http://hdl.handle.net/1721.1/100002
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mathematics; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Journal of Computational Biology
Publisher
Mary Ann Liebert
Citation
Waldispuhl, Jerome, Charles W. O’Donnell, Sebastian Will, Srinivas Devadas, Rolf Backofen, and Bonnie Berger. “Simultaneous Alignment and Folding of Protein Sequences.” Journal of Computational Biology 21, no. 7 (July 2014): 477–491. © Mary Ann Liebert, Inc.
Version: Final published version
ISSN
1066-5277
1557-8666

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.