Show simple item record

dc.contributor.authorChen, Daozheng
dc.contributor.authorBatra, Dhruv
dc.contributor.authorFreeman, William T.
dc.date.accessioned2015-11-24T19:39:24Z
dc.date.available2015-11-24T19:39:24Z
dc.date.issued2013-12
dc.identifier.isbn978-1-4799-2840-8
dc.identifier.issn1550-5499
dc.identifier.urihttp://hdl.handle.net/1721.1/100043
dc.description.abstractLatent variables models have been applied to a number of computer vision problems. However, the complexity of the latent space is typically left as a free design choice. A larger latent space results in a more expressive model, but such models are prone to over fitting and are slower to perform inference with. The goal of this paper is to regularize the complexity of the latent space and learn which hidden states are really relevant for prediction. Specifically, we propose using group-sparsity-inducing regularizers such as ℓ[subscript 1]-ℓ[subscript 2] to estimate the parameters of Structured SVMs with unstructured latent variables. Our experiments on digit recognition and object detection show that our approach is indeed able to control the complexity of latent space without any significant loss in accuracy of the learnt model.en_US
dc.description.sponsorshipQuanta Computer (Firm)en_US
dc.description.sponsorshipGoogle (Firm)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICCV.2013.58en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther univ. web domainen_US
dc.titleGroup Norm for Learning Structured SVMs with Unstructured Latent Variablesen_US
dc.typeArticleen_US
dc.identifier.citationChen, Daozheng, Dhruv Batra, and William T. Freeman. “Group Norm for Learning Structured SVMs with Unstructured Latent Variables.” 2013 IEEE International Conference on Computer Vision (December 2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorFreeman, William T.en_US
dc.relation.journalProceedings of the 2013 IEEE International Conference on Computer Visionen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsChen, Daozheng; Batra, Dhruv; Freeman, William T.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2231-7995
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record