dc.contributor.author | Langs, Georg | |
dc.contributor.author | Sweet, Andrew | |
dc.contributor.author | Lashkari, Danial | |
dc.contributor.author | Tie, Yanmei | |
dc.contributor.author | Rigolo, Laura | |
dc.contributor.author | Golby, Alexandra J. | |
dc.contributor.author | Golland, Polina | |
dc.date.accessioned | 2015-12-13T20:53:06Z | |
dc.date.available | 2015-12-13T20:53:06Z | |
dc.date.issued | 2014-08 | |
dc.identifier.issn | 10538119 | |
dc.identifier.issn | 1095-9572 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/100222 | |
dc.description.abstract | In this paper we construct an atlas that summarizes functional connectivity characteristics of a cognitive process from a population of individuals. The atlas encodes functional connectivity structure in a low-dimensional embedding space that is derived from a diffusion process on a graph that represents correlations of fMRI time courses. The functional atlas is decoupled from the anatomical space, and thus can represent functional networks with variable spatial distribution in a population. In practice the atlas is represented by a common prior distribution for the embedded fMRI signals of all subjects. We derive an algorithm for fitting this generative model to the observed data in a population. Our results in a language fMRI study demonstrate that the method identifies coherent and functionally equivalent regions across subjects. The method also successfully maps functional networks from a healthy population used as a training set to individuals whose language networks are affected by tumors. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.). Division of Information & Intelligent Systems (Collaborative Research in Computational Neuroscience Grant 0904625) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (CAREER Grant 0642971) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (National Center for Research Resources (U.S.)/Neuroimaging Analysis Center (U.S.) P41-RR13218) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (National Institute for Biomedical Imaging and Bioengineering (U.S.)/Neuroimaging Analysis Center (U.S.) P41-EB-015902) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (National Institute for Biomedical Imaging and Bioengineering (U.S.)/National Alliance for Medical Image Computing (U.S.) U54-EB005149) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (U41RR019703) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) R01HD067312) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (P01CA067165) | en_US |
dc.description.sponsorship | Brain Science Foundation | en_US |
dc.description.sponsorship | Klarman Family Foundation | en_US |
dc.description.sponsorship | European Commission (FP7/2007–2013) n°257528 (KHRESMOI)) | en_US |
dc.description.sponsorship | European Commission (330003 (FABRIC)) | en_US |
dc.description.sponsorship | Austrian Science Fund (P 22578-B19 (PULMARCH)) | en_US |
dc.language.iso | en_US | |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.neuroimage.2014.08.029 | en_US |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs License | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
dc.source | PMC | en_US |
dc.title | Decoupling function and anatomy in atlases of functional connectivity patterns: Language mapping in tumor patients | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Langs, Georg, Andrew Sweet, Danial Lashkari, Yanmei Tie, Laura Rigolo, Alexandra J. Golby, and Polina Golland. “Decoupling Function and Anatomy in Atlases of Functional Connectivity Patterns: Language Mapping in Tumor Patients.” NeuroImage 103 (December 2014): 462–475. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Langs, Georg | en_US |
dc.contributor.mitauthor | Sweet, Andrew | en_US |
dc.contributor.mitauthor | Lashkari, Danial | en_US |
dc.contributor.mitauthor | Golland, Polina | en_US |
dc.relation.journal | NeuroImage | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Langs, Georg; Sweet, Andrew; Lashkari, Danial; Tie, Yanmei; Rigolo, Laura; Golby, Alexandra J.; Golland, Polina | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-2516-731X | |
mit.license | PUBLISHER_CC | en_US |
mit.metadata.status | Complete | |