Show simple item record

dc.contributor.authorRiklin-Raviv, Tammy
dc.contributor.authorVan Leemput, Koen
dc.contributor.authorMenze, Bjoern H.
dc.contributor.authorGolland, Polina
dc.contributor.authorWells, William M.
dc.date.accessioned2015-12-14T13:41:42Z
dc.date.available2015-12-14T13:41:42Z
dc.date.issued2010-06
dc.identifier.issn13618415
dc.identifier.urihttp://hdl.handle.net/1721.1/100236
dc.description.abstractSpatial priors, such as probabilistic atlases, play an important role in MRI segmentation. However, the availability of comprehensive, reliable and suitable manual segmentations for atlas construction is limited. We therefore propose a method for joint segmentation of corresponding regions of interest in a collection of aligned images that does not require labeled training data. Instead, a latent atlas, initialized by at most a single manual segmentation, is inferred from the evolving segmentations of the ensemble. The algorithm is based on probabilistic principles but is solved using partial differential equations (PDEs) and energy minimization criteria. We evaluate the method on two datasets, segmenting subcortical and cortical structures in a multi-subject study and extracting brain tumors in a single-subject multi-modal longitudinal experiment. We compare the segmentation results to manual segmentations, when those exist, and to the results of a state-of-the-art atlas-based segmentation method. The quality of the results supports the latent atlas as a promising alternative when existing atlases are not compatible with the images to be segmented.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (National Institute for Biomedical Imaging and Bioengineering (U.S.)/National Alliance for Medical Image Computing (U.S.) U54-EB005149)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (National Center for Research Resources (U.S.)/Neuroimaging Analysis Center (U.S.) P41-RR13218)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (National Institute of Neurological Disorders and Stroke (U.S.) R01-NS051826)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (National Center for Research Resources (U.S.)/Biomedical Informatics Research Network U24-RR021382)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Award 0642971)en_US
dc.description.sponsorshipGerman Academy of Sciences Leopoldina (Fellowship LPDS 2009-10)en_US
dc.description.sponsorshipAcademy of Finland (Grant 133611)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.media.2010.05.004en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleSegmentation of image ensembles via latent atlasesen_US
dc.typeArticleen_US
dc.identifier.citationRiklin-Raviv, Tammy, Koen Van Leemput, Bjoern H. Menze, William M. Wells III, and Polina Golland. “Segmentation of Image Ensembles via Latent Atlases.” Medical Image Analysis 14, no. 5 (October 2010): 654–665.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorRiklin-Raviv, Tammyen_US
dc.contributor.mitauthorVan Leemput, Koenen_US
dc.contributor.mitauthorMenze, Bjoern H.en_US
dc.contributor.mitauthorWells, William M.en_US
dc.contributor.mitauthorGolland, Polinaen_US
dc.relation.journalMedical Image Analysisen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRiklin-Raviv, Tammy; Van Leemput, Koen; Menze, Bjoern H.; Wells III, William M.; Golland, Polinaen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2516-731X
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record