Show simple item record

dc.contributor.authorWachinger, Christian
dc.contributor.authorGolland, Polina
dc.date.accessioned2015-12-14T22:51:20Z
dc.date.available2015-12-14T22:51:20Z
dc.date.issued2014
dc.identifier.isbn978-3-319-10403-4
dc.identifier.isbn978-3-319-10404-1
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/100252
dc.description.abstractWe study the widespread, but rarely discussed, tendency of atlas-based segmentation to under-segment the organs of interest. Commonly used error measures do not distinguish between under- and over-segmentation, contributing to the problem. We explicitly quantify over- and under-segmentation in several typical examples and present a new hypothesis for the cause. We provide evidence that segmenting only one organ of interest and merging all surrounding structures into one label creates bias towards background in the label estimates suggested by the atlas. We propose a generative model that corrects for this effect by learning the background structures from the data. Inference in the model separates the background into distinct structures and consequently improves the segmentation accuracy. Our experiments demonstrate a clear improvement in several applications.en_US
dc.description.sponsorshipNational Alliance for Medical Image Computing (U.S.) (U54-EB005149)en_US
dc.description.sponsorshipNeuroimaging Analysis Center (U.S.) (P41-EB015902)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-10404-1_40en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleAtlas-Based Under-Segmentationen_US
dc.typeArticleen_US
dc.identifier.citationWachinger, Christian, and Polina Golland. “Atlas-Based Under-Segmentation.” Lecture Notes in Computer Science (2014): 315–322.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorWachinger, Christianen_US
dc.contributor.mitauthorGolland, Polinaen_US
dc.relation.journalMedical Image Computing and Computer-Assisted Intervention – MICCAI 2014en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWachinger, Christian; Golland, Polinaen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3652-1874
dc.identifier.orcidhttps://orcid.org/0000-0003-2516-731X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record