Show simple item record

dc.contributor.authorFreeman, William T.
dc.contributor.authorWei, Donglai
dc.contributor.authorLiu, Ce
dc.date.accessioned2015-12-15T02:48:28Z
dc.date.available2015-12-15T02:48:28Z
dc.date.issued2014-12
dc.identifier.isbn978-1-4799-7000-1
dc.identifier.urihttp://hdl.handle.net/1721.1/100257
dc.description.abstractData-driven techniques can reliably build semantic correspondence among images. In this paper, we present a new regularization model for stereo or flow through transferring the shape information of the disparity or flow from semantically matched patches in the training database. Compared to previous regularization models based on image appearance alone, we can better resolve local ambiguity of the disparity or flow by considering the semantic information without explicit object modeling. We incorporate this data-driven regularization model into a standard Markov Random Field (MRF) model, inferred with a gradient descent algorithm and learned with a discriminative learning approach. Compared to prior state-of-the-art methods, our full model achieves comparable or better results on the KITTI stereo and flow datasets, and improves results on the Sintel Flow dataset under an online estimation setting.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CGV 1212849)en_US
dc.description.sponsorshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Award N00014-09-1-1051)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/3DV.2014.97en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleA Data-Driven Regularization Model for Stereo and Flowen_US
dc.typeArticleen_US
dc.identifier.citationDonglai Wei, Ce Liu, and William T. Freeman. “A Data-Driven Regularization Model for Stereo and Flow.” 2014 2nd International Conference on 3D Vision (December 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorWei, Donglaien_US
dc.contributor.mitauthorFreeman, William T.en_US
dc.relation.journalProceedings of the 2014 2nd International Conference on 3D Visionen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsDonglai Wei; Ce Liu; Freeman, William T.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2329-5484
dc.identifier.orcidhttps://orcid.org/0000-0002-2231-7995
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record