Show simple item record

dc.contributor.authorHazan, Tamir
dc.contributor.authorMaji, Subhransu
dc.contributor.authorJaakkola, Tommi S.
dc.date.accessioned2015-12-16T22:45:16Z
dc.date.available2015-12-16T22:45:16Z
dc.date.issued2013
dc.identifier.issn1049-5258
dc.identifier.urihttp://hdl.handle.net/1721.1/100400
dc.description.abstractIn this paper we describe how MAP inference can be used to sample efficiently from Gibbs distributions. Specifically, we provide means for drawing either approximate or unbiased samples from Gibbs' distributions by introducing low dimensional perturbations and solving the corresponding MAP assignments. Our approach also leads to new ways to derive lower bounds on partition functions. We demonstrate empirically that our method excels in the typical high signal - high coupling'' regime. The setting results in ragged energy landscapes that are challenging for alternative approaches to sampling and/or lower bounds.en_US
dc.language.isoen_US
dc.publisherNeural Information Processing Systemsen_US
dc.relation.isversionofhttp://papers.nips.cc/paper/4962-on-sampling-from-the-gibbs-distribution-with-random-maximum-a-posteriori-perturbationsen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT web domainen_US
dc.titleOn sampling from the Gibbs distribution with random maximum a-posteriori perturbationsen_US
dc.typeArticleen_US
dc.identifier.citationHazan, Tamir, Subhransu Maji, and Tommi Jaakkola. "On sampling from the Gibbs distribution with random maximum a-posteriori perturbations." Advances in Neural Information Processing Systems 26 (NIPS 2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorJaakkola, Tommi S.en_US
dc.relation.journalAdvances in Neural Information Processing Systems (NIPS)en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsHazan, Tamir; Maji, Subhransu; Jaakkola, Tommien_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2199-0379
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record