| dc.contributor.author | Abel, Zachary Ryan | |
| dc.contributor.author | Demaine, Erik D. | |
| dc.contributor.author | Demaine, Martin L. | |
| dc.contributor.author | Ito, Hiro | |
| dc.contributor.author | Snoeyink, Jack | |
| dc.contributor.author | Uehara, Ryuhei | |
| dc.date.accessioned | 2015-12-17T01:55:59Z | |
| dc.date.available | 2015-12-17T01:55:59Z | |
| dc.date.issued | 2014-08 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/100406 | |
| dc.description.abstract | We investigate folding problems for a class of petal polygons P, which have an n-polygonal base B surrounded by a sequence of triangles. We give linear time algorithms using constant precision to determine if P can fold to a pyramid with flat base B, and to determine a triangulation of B (crease pattern) that allows folding into a convex (triangulated) polyhedron. By Alexandrov’s theorem, the crease pattern is unique if it exists, but the general algorithm known for this theorem is pseudo-polynomial, with very large running time; ours is the first efficient algorithm for Alexandrov’s theorem for a special class of polyhedra. We also give a polynomial time algorithm that finds the crease pattern to produce the maximum volume triangulated polyhedron. | en_US |
| dc.language.iso | en_US | |
| dc.relation.isversionof | http://www.cccg.ca/proceedings/2014/ | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
| dc.source | Other univ. web domain | en_US |
| dc.title | Bumpy pyramid folding | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Abel, Zachary R., Erik D. Demaine, Martin L. Demaine, Hiro Ito, Jack Snoeyink, Ryuhei Uehara. "Bumpy pyramid folding." 26th Canadian Conference on Computational Geometry (August 2014). | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
| dc.contributor.mitauthor | Abel, Zachary Ryan | en_US |
| dc.contributor.mitauthor | Demaine, Erik D. | en_US |
| dc.contributor.mitauthor | Demaine, Martin L. | en_US |
| dc.relation.journal | Proceedings of the 26th Canadian Conference on Computational Geometry | en_US |
| dc.eprint.version | Author's final manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
| eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
| dspace.orderedauthors | Abel, Zachary R.; Demaine, Erik D.; Demaine, Martin L.; Ito, Hiro; Snoeyink, Jack; Uehara, Ryuhei | en_US |
| dc.identifier.orcid | https://orcid.org/0000-0003-3803-5703 | |
| dc.identifier.orcid | https://orcid.org/0000-0002-4295-1117 | |
| mit.license | OPEN_ACCESS_POLICY | en_US |
| mit.metadata.status | Complete | |