Show simple item record

dc.contributor.authorAbel, Zachary Ryan
dc.contributor.authorDemaine, Erik D.
dc.contributor.authorDemaine, Martin L.
dc.contributor.authorIto, Hiro
dc.contributor.authorSnoeyink, Jack
dc.contributor.authorUehara, Ryuhei
dc.date.accessioned2015-12-17T01:55:59Z
dc.date.available2015-12-17T01:55:59Z
dc.date.issued2014-08
dc.identifier.urihttp://hdl.handle.net/1721.1/100406
dc.description.abstractWe investigate folding problems for a class of petal polygons P, which have an n-polygonal base B surrounded by a sequence of triangles. We give linear time algorithms using constant precision to determine if P can fold to a pyramid with flat base B, and to determine a triangulation of B (crease pattern) that allows folding into a convex (triangulated) polyhedron. By Alexandrov’s theorem, the crease pattern is unique if it exists, but the general algorithm known for this theorem is pseudo-polynomial, with very large running time; ours is the first efficient algorithm for Alexandrov’s theorem for a special class of polyhedra. We also give a polynomial time algorithm that finds the crease pattern to produce the maximum volume triangulated polyhedron.en_US
dc.language.isoen_US
dc.relation.isversionofhttp://www.cccg.ca/proceedings/2014/en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther univ. web domainen_US
dc.titleBumpy pyramid foldingen_US
dc.typeArticleen_US
dc.identifier.citationAbel, Zachary R., Erik D. Demaine, Martin L. Demaine, Hiro Ito, Jack Snoeyink, Ryuhei Uehara. "Bumpy pyramid folding." 26th Canadian Conference on Computational Geometry (August 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorAbel, Zachary Ryanen_US
dc.contributor.mitauthorDemaine, Erik D.en_US
dc.contributor.mitauthorDemaine, Martin L.en_US
dc.relation.journalProceedings of the 26th Canadian Conference on Computational Geometryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsAbel, Zachary R.; Demaine, Erik D.; Demaine, Martin L.; Ito, Hiro; Snoeyink, Jack; Uehara, Ryuheien_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3803-5703
dc.identifier.orcidhttps://orcid.org/0000-0002-4295-1117
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record