dc.contributor.author | Venkataraman, Archana | |
dc.contributor.author | Kubicki, Marek | |
dc.contributor.author | Golland, Polina | |
dc.date.accessioned | 2015-12-18T02:18:03Z | |
dc.date.available | 2015-12-18T02:18:03Z | |
dc.date.issued | 2013-07 | |
dc.identifier.issn | 0278-0062 | |
dc.identifier.issn | 1558-254X | |
dc.identifier.uri | http://hdl.handle.net/1721.1/100421 | |
dc.description.abstract | We propose a novel approach to identify the foci of a neurological disorder based on anatomical and functional connectivity information. Specifically, we formulate a generative model that characterizes the network of abnormal functional connectivity emanating from the affected foci. This allows us to aggregate pairwise connectivity changes into a region-based representation of the disease. We employ the variational expectation-maximization algorithm to fit the model and subsequently identify both the afflicted regions and the differences in connectivity induced by the disorder. We demonstrate our method on a population study of schizophrenia. | en_US |
dc.description.sponsorship | National Alliance for Medical Image Computing (U.S.) (Grant NIH NIBIB NAMIC U54-EB005149) | en_US |
dc.description.sponsorship | Neuroimaging Analysis Center (U.S.) (Grant NIH NCRR NAC P41-RR13218) | en_US |
dc.description.sponsorship | Neuroimaging Analysis Center (U.S.) (Grant NIH NCRR NAC P41-EB015902) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (CAREER Grant 0642971) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (R01MH074794) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.). Advanced Multimodal Neuroimaging Training Program | en_US |
dc.language.iso | en_US | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/tmi.2013.2272976 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | PMC | en_US |
dc.title | From Connectivity Models to Region Labels: Identifying Foci of a Neurological Disorder | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Venkataraman, Archana, Marek Kubicki, and Polina Golland. “From Connectivity Models to Region Labels: Identifying Foci of a Neurological Disorder.” IEEE Trans. Med. Imaging 32, no. 11 (November 2013): 2078–2098. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Venkataraman, Archana | en_US |
dc.contributor.mitauthor | Golland, Polina | en_US |
dc.relation.journal | IEEE Transactions on Medical Imaging | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Venkataraman, Archana; Kubicki, Marek; Golland, Polina | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-2516-731X | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |