MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decentralized stochastic planning with anonymity in interactions

Author(s)
Varakantham, Pradeep; Adulyasak, Yossiri; Jaillet, Patrick
Thumbnail
DownloadJaillet_Decentralized stochastic.pdf (657.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
In this paper, we solve cooperative decentralized stochastic planning problems, where the interactions between agents (specified using transition and reward functions) are dependent on the number of agents (and not on the identity of the individual agents) involved in the interaction. A collision of robots in a narrow corridor, defender teams coordinating patrol activities to secure a target, etc. are examples of such anonymous interactions. Formally, we consider problems that are a subset of the well known Decentralized MDP (DEC-MDP) model, where the anonymity in interactions is specified within the joint reward and transition functions. In this paper, not only do we introduce a general model model called D-SPAIT to capture anonymity in interactions, but also provide optimization based optimal and local-optimal solutions for generalizable sub-categories of D-SPAIT.
Date issued
2014-07
URI
http://hdl.handle.net/1721.1/100438
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 28th AAAI Conference on Artificial Intelligence
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Citation
Varakantham, Pradeep, Yossiri Adulyasak, and Patrick Jaillet. "Decentralized stochastic planning with anonymity in interactions." 28th AAAI Conference on Artificial Intelligence (July 2014).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.