MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic Redeployment to Counter Congestion or Starvation in Vehicle Sharing Systems

Author(s)
Ghosh, Supriyo; Varakantham, Pradeep; Adulyasak, Yossiri; Jaillet, Patrick
Thumbnail
DownloadJaillet_Dynamic redeployment.pdf (409.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Extensive usage of private vehicles has led to increased traffic congestion, carbon emissions, and usage of non-renewable resources. These concerns have led to the wide adoption of vehicle sharing (ex: bike sharing, car sharing) systems in many cities of the world. In vehicle-sharing systems, base stations (ex: docking stations for bikes) are strategically placed throughout a city and each of the base stations contain a pre-determined number of vehicles at the beginning of each day. Due to the stochastic and individualistic movement of customers,there is typically either congestion (more than required)or starvation (fewer than required) of vehicles at certain base stations. As demonstrated in our experimental results, this happens often and can cause a significant loss in demand. We propose to dynamically redeploy idle vehicles using carriers so as to minimize lost de-mand or alternatively maximize revenue for the vehicle sharing company. To that end, we contribute an optimization formulation to jointly address the redeploy-ment (of vehicles) and routing (of carriers) problemsand provide two approaches that rely on decomposability and abstraction of problem domains to reduce the computation time significantly. Finally, we demonstrate the utility of our approaches on two real world data sets of bike-sharing companies.
Date issued
2015-06
URI
http://hdl.handle.net/1721.1/100439
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 25th International Conference on Automated Planning and Scheduling
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Citation
Ghosh, Supriyo, Pradeep Varakantham, Yossiri Adulyasak, and Patrick Jaillet. "Dynamic Redeployment to Counter Congestion or Starvation in Vehicle Sharing Systems." 25th International Conference on Automated Planning and Scheduling (June 2015).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.