MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interactive simulation of stylized human locomotion

Author(s)
da Silva, Marco; Abe, Yeuhi; Popovic, Jovan
Thumbnail
Downloadstylized_human_locomotion.pdf (1.318Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Animating natural human motion in dynamic environments is difficult because of complex geometric and physical interactions. Simulation provides an automatic solution to parts of this problem, but it needs control systems to produce lifelike motions. This paper describes the systematic computation of controllers that can reproduce a range of locomotion styles in interactive simulations. Given a reference motion that describes the desired style, a derived control system can reproduce that style in simulation and in new environments. Because it produces high-quality motions that are both geometrically and physically consistent with simulated surroundings, interactive animation systems could begin to use this approach along with more established kinematic methods.
Date issued
2008-08
URI
http://hdl.handle.net/1721.1/100442
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
ACM Transactions on Graphics
Publisher
Association for Computing Machinery (ACM)
Citation
Marco da Silva, Yeuhi Abe, and Jovan Popovic. 2008. Interactive simulation of stylized human locomotion. ACM Trans. Graph. 27, 3, Article 82 (August 2008), 10 pages.
Version: Author's final manuscript
ISSN
07300301

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.