MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

VerSum: Verifiable Computations over Large Public Logs

Author(s)
van den Hooff, Jelle; Kaashoek, M. Frans; Zeldovich, Nickolai
Thumbnail
DownloadKaashoek_VerSum.pdf (277.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
VerSum allows lightweight clients to outsource expensive computations over large and frequently changing data structures, such as the Bitcoin or Namecoin blockchains, or a Certificate Transparency log. VerSum clients ensure that the output is correct by comparing the outputs from multiple servers. VerSum assumes that at least one server is honest, and crucially, when servers disagree, VerSum uses an efficient conflict resolution protocol to determine which server(s) made a mistake and thus obtain the correct output. VerSum's contribution lies in achieving low server-side overhead for both incremental re-computation and conflict resolution, using three key ideas: (1) representing the computation as a functional program, which allows memoization of previous results; (2) recording the evaluation trace of the functional program in a carefully designed computation history to help clients determine which server made a mistake; and (3) introducing a new authenticated data structure for sequences, called SeqHash, that makes it efficient for servers to construct summaries of computation histories in the presence of incremental re-computation. Experimental results with an implementation of VerSum show that VerSum can be used for a variety of computations, that it can support many clients, and that it can easily keep up with Bitcoin's rate of new blocks with transactions.
Date issued
2014-11
URI
http://hdl.handle.net/1721.1/100450
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (CCS '14)
Publisher
Association for Computing Machinery (ACM)
Citation
Jelle van den Hooff, M. Frans Kaashoek, and Nickolai Zeldovich. 2014. VerSum: Verifiable Computations over Large Public Logs. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (CCS '14). ACM, New York, NY, USA, 1304-1316.
Version: Author's final manuscript
ISBN
9781450329576

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.