dc.contributor.author | Schultz, Benjamin A. | |
dc.contributor.author | Glaser, Jens | |
dc.contributor.author | Engel, Michael | |
dc.contributor.author | Szakasits, Megan E. | |
dc.contributor.author | Glotzer, Sharon C. | |
dc.contributor.author | Solomon, Michael J. | |
dc.contributor.author | Hsiao, Lilian | |
dc.date.accessioned | 2015-12-23T15:48:59Z | |
dc.date.available | 2015-12-23T15:48:59Z | |
dc.date.issued | 2015-10 | |
dc.date.submitted | 2015-04 | |
dc.identifier.issn | 2041-1723 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/100498 | |
dc.description.abstract | The interplay between phase separation and kinetic arrest is important in supramolecular self-assembly, but their effects on emergent orientational order are not well understood when anisotropic building blocks are used. Contrary to the typical progression from disorder to order in isotropic systems, here we report that colloidal oblate discoids initially self-assemble into short, metastable strands with orientational order—regardless of the final structure. The model discoids are suspended in a refractive index and density-matched solvent. Then, we use confocal microscopy experiments and Monte Carlo simulations spanning a broad range of volume fractions and attraction strengths to show that disordered clusters form near coexistence boundaries, whereas oriented strands persist with strong attractions. We rationalize this unusual observation in light of the interaction anisotropy imparted by the discoids. These findings may guide self-assembly for anisotropic systems in which orientational order is desired, such as when tailored mechanical properties are sought. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (NSF CBET 1232937) | en_US |
dc.language.iso | en_US | |
dc.publisher | Nature Publishing Group | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1038/ncomms9507 | en_US |
dc.rights | Creative Commons Attribution | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Nature Publishing Group | en_US |
dc.title | Metastable orientational order of colloidal discoids | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Hsiao, Lilian C., Benjamin A. Schultz, Jens Glaser, Michael Engel, Megan E. Szakasits, Sharon C. Glotzer, and Michael J. Solomon. “Metastable Orientational Order of Colloidal Discoids.” Nat Comms 6 (October 7, 2015): 8507. © 2015 Macmillan Publishers Limited | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemical Engineering | en_US |
dc.contributor.mitauthor | Hsiao, Lilian | en_US |
dc.relation.journal | Nature Communications | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Hsiao, Lilian C.; Schultz, Benjamin A.; Glaser, Jens; Engel, Michael; Szakasits, Megan E.; Glotzer, Sharon C.; Solomon, Michael J. | en_US |
mit.license | PUBLISHER_CC | en_US |
mit.metadata.status | Complete | |