Show simple item record

dc.contributor.authorLatza, Victoria
dc.contributor.authorGuerette, Paul A.
dc.contributor.authorDing, Dawei
dc.contributor.authorAmini, Shahrouz
dc.contributor.authorKumar, Akshita
dc.contributor.authorSchmidt, Ingo
dc.contributor.authorOxman, Neri
dc.contributor.authorWeaver, James C.
dc.contributor.authorFratzl, Peter
dc.contributor.authorMiserez, Ali
dc.contributor.authorMasic, Admir
dc.contributor.authorKeating, Steven John
dc.date.accessioned2015-12-23T17:41:01Z
dc.date.available2015-12-23T17:41:01Z
dc.date.issued2015-09
dc.date.submitted2015-04
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/100505
dc.description.abstractAlthough thermoplastic materials are mostly derived from petro-chemicals, it would be highly desirable, from a sustainability perspective, to produce them instead from renewable biopolymers. Unfortunately, biopolymers exhibiting thermoplastic behaviour and which preserve their mechanical properties post processing are essentially non-existent. The robust sucker ring teeth (SRT) from squid and cuttlefish are one notable exception of thermoplastic biopolymers. Here we describe thermoplastic processing of squid SRT via hot extrusion of fibres, demonstrating the potential suitability of these materials for large-scale thermal forming. Using high-resolution in situ X-ray diffraction and vibrational spectroscopy, we elucidate the molecular and nanoscale features responsible for this behaviour and show that SRT consist of semi-crystalline polymers, whereby heat-resistant, nanocrystalline β-sheets embedded within an amorphous matrix are organized into a hexagonally packed nanofibrillar lattice. This study provides key insights for the molecular design of biomimetic protein- and peptide-based thermoplastic structural biopolymers with potential biomedical and 3D printing applications.en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms9313en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleMulti-scale thermal stability of a hard thermoplastic protein-based materialen_US
dc.typeArticleen_US
dc.identifier.citationLatza, Victoria, Paul A. Guerette, Dawei Ding, Shahrouz Amini, Akshita Kumar, Ingo Schmidt, Steven Keating, et al. “Multi-Scale Thermal Stability of a Hard Thermoplastic Protein-Based Material.” Nat Comms 6 (September 21, 2015): 8313. © 2015 Macmillan Publishers Limiteden_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorKeating, Steven Johnen_US
dc.contributor.mitauthorOxman, Nerien_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLatza, Victoria; Guerette, Paul A.; Ding, Dawei; Amini, Shahrouz; Kumar, Akshita; Schmidt, Ingo; Keating, Steven; Oxman, Neri; Weaver, James C.; Fratzl, Peter; Miserez, Ali; Masic, Admiren_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9222-4447
dc.identifier.orcidhttps://orcid.org/0000-0002-8775-5590
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record