Show simple item record

dc.contributor.authorLi, Lan
dc.contributor.authorZhang, Ping
dc.contributor.authorWang, Wei-Ming
dc.contributor.authorLin, Hongtao
dc.contributor.authorZerdoum, Aidan B.
dc.contributor.authorGeiger, Sarah J.
dc.contributor.authorLiu, Yangchen
dc.contributor.authorXiao, Nicholas
dc.contributor.authorZou, Yi
dc.contributor.authorOgbuu, Okechukwu
dc.contributor.authorDu, Qingyang
dc.contributor.authorJia, Xinqiao
dc.contributor.authorLi, Jingjing
dc.contributor.authorHu, Juejun
dc.date.accessioned2015-12-28T15:25:25Z
dc.date.available2015-12-28T15:25:25Z
dc.date.issued2015-09
dc.date.submitted2015-05
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/100534
dc.description.abstractIntegrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO[subscript 2] as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO[subscript 2] films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO[subscript 2] material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO[subscript 2] devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO[subscript 2] as a promising material platform for novel biophotonic devices.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award 1453218)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Award R01DC011377)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/srep13832en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleFoldable and Cytocompatible Sol-gel TiO[subscript 2] Photonicsen_US
dc.typeArticleen_US
dc.identifier.citationLi, Lan, Ping Zhang, Wei-Ming Wang, Hongtao Lin, Aidan B. Zerdoum, Sarah J. Geiger, Yangchen Liu, et al. “Foldable and Cytocompatible Sol-Gel TiO2 Photonics.” Scientific Reports 5 (September 7, 2015): 13832.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorHu, Juejunen_US
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLi, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B.; Geiger, Sarah J.; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejunen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7233-3918
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record