Show simple item record

dc.contributor.authorAguilar, Carlos A.
dc.contributor.authorShcherbina, Anna
dc.contributor.authorRicke, Darrell O.
dc.contributor.authorPop, Ramona
dc.contributor.authorCarrigan, Christopher T.
dc.contributor.authorGifford, Casey A.
dc.contributor.authorUrso, Maria L.
dc.contributor.authorKottke, Melissa A.
dc.contributor.authorMeissner, Alexander
dc.date.accessioned2015-12-28T15:54:23Z
dc.date.available2015-12-28T15:54:23Z
dc.date.issued2015-09
dc.date.submitted2015-03
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/100536
dc.description.abstractTraumatic lower-limb musculoskeletal injuries are pervasive amongst athletes and the military and typically an individual returns to activity prior to fully healing, increasing a predisposition for additional injuries and chronic pain. Monitoring healing progression after a musculoskeletal injury typically involves different types of imaging but these approaches suffer from several disadvantages. Isolating and profiling transcripts from the injured site would abrogate these shortcomings and provide enumerative insights into the regenerative potential of an individual’s muscle after injury. In this study, a traumatic injury was administered to a mouse model and healing progression was examined from 3 hours to 1 month using high-throughput RNA-Sequencing (RNA-Seq). Comprehensive dissection of the genome-wide datasets revealed the injured site to be a dynamic, heterogeneous environment composed of multiple cell types and thousands of genes undergoing significant expression changes in highly regulated networks. Four independent approaches were used to determine the set of genes, isoforms, and genetic pathways most characteristic of different time points post-injury and two novel approaches were developed to classify injured tissues at different time points. These results highlight the possibility to quantitatively track healing progression in situ via transcript profiling using high- throughput sequencing.en_US
dc.description.sponsorshipUnited States. Air Force (Contract FA8721-05-C-0002)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/srep13885en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleIn vivo Monitoring of Transcriptional Dynamics After Lower-Limb Muscle Injury Enables Quantitative Classification of Healingen_US
dc.typeArticleen_US
dc.identifier.citationAguilar, Carlos A., Anna Shcherbina, Darrell O. Ricke, Ramona Pop, Christopher T. Carrigan, Casey A. Gifford, Maria L. Urso, Melissa A. Kottke, and Alexander Meissner. “In Vivo Monitoring of Transcriptional Dynamics After Lower-Limb Muscle Injury Enables Quantitative Classification of Healing.” Scientific Reports 5 (September 18, 2015): 13885.en_US
dc.contributor.departmentLincoln Laboratoryen_US
dc.contributor.mitauthorAguilar, Carlos A.en_US
dc.contributor.mitauthorShcherbina, Annaen_US
dc.contributor.mitauthorRicke, Darrell O.en_US
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAguilar, Carlos A.; Shcherbina, Anna; Ricke, Darrell O.; Pop, Ramona; Carrigan, Christopher T.; Gifford, Casey A.; Urso, Maria L.; Kottke, Melissa A.; Meissner, Alexanderen_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record