Show simple item record

dc.contributor.authorOdor, Geza
dc.contributor.authorDickman, Ronald
dc.contributor.authorOdor, Gergely
dc.date.accessioned2015-12-28T17:53:41Z
dc.date.available2015-12-28T17:53:41Z
dc.date.issued2015-09
dc.date.submitted2015-04
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/100539
dc.description.abstractWe study variants of hierarchical modular network models suggested by Kaiser and Hilgetag [ Front. in Neuroinform., 4 (2010) 8] to model functional brain connectivity, using extensive simulations and quenched mean-field theory (QMF), focusing on structures with a connection probability that decays exponentially with the level index. Such networks can be embedded in two-dimensional Euclidean space. We explore the dynamic behavior of the contact process (CP) and threshold models on networks of this kind, including hierarchical trees. While in the small-world networks originally proposed to model brain connectivity, the topological heterogeneities are not strong enough to induce deviations from mean-field behavior, we show that a Griffiths phase can emerge under reduced connection probabilities, approaching the percolation threshold. In this case the topological dimension of the networks is finite, and extended regions of bursty, power-law dynamics are observed. Localization in the steady state is also shown via QMF. We investigate the effects of link asymmetry and coupling disorder, and show that localization can occur even in small-world networks with high connectivity in case of link disorder.en_US
dc.description.sponsorshipHungarian Scientific Research Fund (OTKA Grant K109577)en_US
dc.description.sponsorshipEuropean Social Fund (Project FuturICT.hu Grant TAMOP-4.2.2.C-11/1/KONV-2012-0013)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/srep14451en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleGriffiths phases and localization in hierarchical modular networksen_US
dc.typeArticleen_US
dc.identifier.citationOdor, Geza, Ronald Dickman, and Gergely Odor. “Griffiths Phases and Localization in Hierarchical Modular Networks.” Scientific Reports 5 (September 24, 2015): 14451.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorOdor, Gergelyen_US
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsOdor, Geza; Dickman, Ronald; Odor, Gergelyen_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record