MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transcriptional and Linkage Analyses Identify Loci that Mediate the Differential Macrophage Response to Inflammatory Stimuli and Infection

Author(s)
Hassan, Musa A.; Jensen, Kirk D.; Hu, Kenneth; Boedec, Erwan; Prins, Pjotr; Saeij, Jeroen; Butty, Vincent L G; ... Show more Show less
Thumbnail
DownloadHassan-2015-Transcriptional and.pdf (1.074Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Macrophages display flexible activation states that range between pro-inflammatory (classical activation) and anti-inflammatory (alternative activation). These macrophage polarization states contribute to a variety of organismal phenotypes such as tissue remodeling and susceptibility to infectious and inflammatory diseases. Several macrophage- or immune-related genes have been shown to modulate infectious and inflammatory disease pathogenesis. However, the potential role that differences in macrophage activation phenotypes play in modulating differences in susceptibility to infectious and inflammatory disease is just emerging. We integrated transcriptional profiling and linkage analyses to determine the genetic basis for the differential murine macrophage response to inflammatory stimuli and to infection with the obligate intracellular parasite Toxoplasma gondii. We show that specific transcriptional programs, defined by distinct genomic loci, modulate macrophage activation phenotypes. In addition, we show that the difference between AJ and C57BL/6J macrophages in controlling Toxoplasma growth after stimulation with interferon gamma and tumor necrosis factor alpha mapped to chromosome 3, proximal to the Guanylate binding protein (Gbp) locus that is known to modulate the murine macrophage response to Toxoplasma. Using an shRNA-knockdown strategy, we show that the transcript levels of an RNA helicase, Ddx1, regulates strain differences in the amount of nitric oxide produced by macrophage after stimulation with interferon gamma and tumor necrosis factor. Our results provide a template for discovering candidate genes that modulate macrophage-mediated complex traits.
Date issued
2015-10
URI
http://hdl.handle.net/1721.1/100590
Department
Massachusetts Institute of Technology. Department of Biology
Journal
PLOS Genetics
Publisher
Public Library of Science
Citation
Hassan, Musa A., Kirk D. Jensen, Vincent Butty, Kenneth Hu, Erwan Boedec, Pjotr Prins, and Jeroen P. J. Saeij. “Transcriptional and Linkage Analyses Identify Loci That Mediate the Differential Macrophage Response to Inflammatory Stimuli and Infection.” Edited by Barbara E. Stranger. PLOS Genetics 11, no. 10 (October 28, 2015): e1005619.
Version: Final published version
ISSN
1553-7404

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.