MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

State Estimation of the Time-Varying and Spatially Localized Concentration of Signal Molecules from the Stochastic Adsorption Dynamics on the Carbon Nanotube-Based Sensors and Its Application to Tumor Cell Detection

Author(s)
Jang, Hong; Lee, Jay H.; Braatz, Richard D.
Thumbnail
DownloadJang-2015-State Estimation of.pdf (1.862Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
This paper addresses a problem of estimating time-varying, local concentrations of signal molecules with a carbon-nanotube (CNT)-based sensor array system, which sends signals triggered by monomolecular adsorption/desorption events of proximate molecules on the surfaces of the sensors. Such sensors work on nano-scale phenomena and show inherently stochastic non-Gaussian behavior, which is best represented by the chemical master equation (CME) describing the time evolution of the probabilities for all the possible number of adsorbed molecules. In the CME, the adsorption rate on each sensor is linearly proportional to the local concentration in the bulk phase. State estimators are proposed for these types of sensors that fully address their stochastic nature. For CNT-based sensors motivated by tumor cell detection, the particle filter, which is nonparametric and can handle non-Gaussian distributions, is compared to a Kalman filter that approximates the underlying distributions by Gaussians. In addition, the second-order generalized pseudo Bayesian estimation (GPB2) algorithm and the Markov chain Monte Carlo (MCMC) algorithm are incorporated into KF and PF respectively, for detecting latent drift in the concentration affected by different states of a cell.
Date issued
2015-11
URI
http://hdl.handle.net/1721.1/100698
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
PLOS ONE
Publisher
Public Library of Science
Citation
Jang, Hong, Jay H. Lee, and Richard D. Braatz. “State Estimation of the Time-Varying and Spatially Localized Concentration of Signal Molecules from the Stochastic Adsorption Dynamics on the Carbon Nanotube-Based Sensors and Its Application to Tumor Cell Detection.” Edited by Adam R Hall. PLoS ONE 10, no. 11 (November 3, 2015): e0141930.
Version: Final published version
ISSN
1932-6203

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.