Show simple item record

dc.contributor.authorWitwicki, Stefan J.
dc.contributor.authorOliehoek, Frans A.
dc.contributor.authorKaelbling, Leslie P.
dc.date.accessioned2016-01-06T14:51:29Z
dc.date.available2016-01-06T14:51:29Z
dc.date.issued2012-06
dc.identifier.isbn978-0-9817381-2-3
dc.identifier.urihttp://hdl.handle.net/1721.1/100717
dc.description.abstractMultiagent planning under uncertainty has seen important progress in recent years. Two techniques, in particular, have substantially advanced efficiency and scalability of planning. Multiagent heuristic search gains traction by pruning large portions of the joint policy space deemed suboptimal by heuristic bounds. Alternatively, influence-based abstraction reformulates the search space of joint policies into a smaller space of influences, which represent the probabilistic effects that agents' policies may exert on one another. These techniques have been used independently, but never together, to solve larger problems (for Dec-POMDPs and subclasses) than previously possible. In this paper, we take the logical albeit nontrivial next step of combining multiagent A* search and influence-based abstraction into a single algorithm. The mathematical foundation that we provide, such as partially-specified influence evaluation and admissible heuristic definition, enables an investigation into whether the two techniques bring complementary gains. Our empirical results indicate that A* can provide significant computational savings on top of those already afforded by influence-space search, thereby bringing a significant contribution to the field of multiagent planning under uncertainty.en_US
dc.description.sponsorshipFundacao para a Ciencia e a Tecnologiaen_US
dc.description.sponsorshipCarnegie Mellon Portugal Program (Project CMU-PT/SIA/0023/2009)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Project FA9550-09-1-0538)en_US
dc.description.sponsorshipNWO of the Netherlands (CATCH Project 640.005.003)en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dl.acm.org/citation.cfm?id=2343836en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleHeuristic Search of Multiagent Influence Spaceen_US
dc.typeArticleen_US
dc.identifier.citationStefan J. Witwicki, Frans A. Oliehoek, and Leslie P. Kaelbling. 2012. Heuristic search of multiagent influence space. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems - Volume 2 (AAMAS '12), Vol. 2. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 973-980.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorOliehoek, Frans A.en_US
dc.contributor.mitauthorKaelbling, Leslie P.en_US
dc.relation.journalProceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS '12)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsWitwicki, Stefan J.; Oliehoek, Frans A.; Kaelbling, Leslie P.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6054-7145
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record