Show simple item record

dc.contributor.authorKonidaris, George D.
dc.contributor.authorKaelbling, Leslie P.
dc.contributor.authorLozano-Perez, Tomas
dc.date.accessioned2016-01-06T15:51:51Z
dc.date.available2016-01-06T15:51:51Z
dc.date.issued2014-07
dc.identifier.urihttp://hdl.handle.net/1721.1/100720
dc.description.abstractWe consider the problem of constructing a symbolic description of a continuous, low-level environment for use in planning. We show that symbols that can represent the preconditions and effects of an agent's actions are both necessary and sufficient for high-level planning. This eliminates the symbol design problem when a representation must be constructed in advance, and in principle enables an agent to autonomously learn its own symbolic representations. The resulting representation can be converted into PDDL, a canonical high-level planning representation that enables very fast planning.en_US
dc.description.sponsorshipMassachusetts Institute of Technology (Intelligence Initiative Fellowship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1117325)en_US
dc.description.sponsorshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-09-1-1051)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Grant FA2386-10-1-4135)en_US
dc.description.sponsorshipSingapore. Ministry of Education (SUTD-MIT International Design Centre)en_US
dc.language.isoen_US
dc.publisherAssociation for the Advancement of Artificial Intelligence (AAAI)en_US
dc.relation.isversionofhttp://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8424en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleConstructing Symbolic Representations for High-Level Planningen_US
dc.typeArticleen_US
dc.identifier.citationKonidaris, George, Leslie Pack Kaelbling, and Tomas Lozano-Perez. "Constructing Symbolic Representations for High-Level Planning." 28th AAAI Conference on Artificial Intelligence (July 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorKonidaris, George D.en_US
dc.contributor.mitauthorKaelbling, Leslie P.en_US
dc.contributor.mitauthorLozano-Perez, Tomasen_US
dc.relation.journalProceedings of the 28th AAAI Conference on Artificial Intelligenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsKonidaris, George; Kaelbling, Leslie Pack; Lozano-Perez, Tomasen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8657-2450
dc.identifier.orcidhttps://orcid.org/0000-0001-6054-7145
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record