dc.contributor.author | Barragan, Patrick R. | |
dc.contributor.author | Lozano-Perez, Tomas | |
dc.contributor.author | Kaelbling, Leslie P. | |
dc.date.accessioned | 2016-01-06T16:21:52Z | |
dc.date.available | 2016-01-06T16:21:52Z | |
dc.date.issued | 2014-05 | |
dc.identifier.isbn | 978-1-4799-3685-4 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/100723 | |
dc.description.abstract | This paper addresses the problem of identifying mechanisms based on data gathered while interacting with them. We present a decision-theoretic formulation of this problem, using Bayesian filtering techniques to maintain a distributional estimate of the mechanism type and parameters. In order to reduce the amount of interaction required to arrive at a confident identification, we select actions explicitly to reduce entropy in the current estimate. We demonstrate the approach on a domain with four primitive and two composite mechanisms. The results show that this approach can correctly identify complex mechanisms including mechanisms which are difficult to model analytically. The results also show that entropy-based action selection can significantly decrease the number of actions required to gather the same information. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant 1117325) | en_US |
dc.description.sponsorship | United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-09-1-1051) | en_US |
dc.description.sponsorship | United States. Air Force Office of Scientific Research (Grant FA2386-10-1-4135) | en_US |
dc.description.sponsorship | Singapore. Ministry of Education (SUTD-MIT International Design Centre) | en_US |
dc.language.iso | en_US | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/ICRA.2014.6907126 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | Interactive Bayesian identification of kinematic mechanisms | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Barragan, Patrick R., Leslie Pack Kaelbling, and Tomas Lozano-Perez. “Interactive Bayesian Identification of Kinematic Mechanisms.” 2014 IEEE International Conference on Robotics and Automation (ICRA) (May 2014). | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Materials Processing Center | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Barragan, Patrick R. | en_US |
dc.contributor.mitauthor | Kaelbling, Leslie P. | en_US |
dc.contributor.mitauthor | Lozano-Perez, Tomas | en_US |
dc.relation.journal | Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA) | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Barragan, Patrick R.; Kaelbling, Leslie Pack; Lozano-Perez, Tomas | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-4749-4979 | |
dc.identifier.orcid | https://orcid.org/0000-0002-8657-2450 | |
dc.identifier.orcid | https://orcid.org/0000-0001-6054-7145 | |
mit.license | OPEN_ACCESS_POLICY | en_US |