Show simple item record

dc.contributor.authorRomano, Giuseppe
dc.contributor.authorEsfarjani, Keivan
dc.contributor.authorBroido, David
dc.contributor.authorKolpak, Alexie M.
dc.contributor.authorStrubbe, David
dc.date.accessioned2016-01-07T16:25:10Z
dc.date.available2016-01-07T16:25:10Z
dc.date.issued2016-01
dc.date.submitted2015-11
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.urihttp://hdl.handle.net/1721.1/100751
dc.description.abstractNanostructured materials exhibit low thermal conductivity because of the additional scattering due to phonon-boundary interactions. As these interactions are highly sensitive to the mean free path (MFP) of phonons, MFP distributions in nanostructures can be dramatically distorted relative to bulk. Here we calculate the MFP distribution in periodic nanoporous Si for different temperatures, using the recently developed MFP-dependent Boltzmann transport equation. After analyzing the relative contribution of each phonon branch to thermal transport in nanoporous Si, we find that at room temperature optical phonons contribute 17% to heat transport, compared to 5% in bulk Si. Interestingly, we observe a constant thermal conductivity over the range 200 K < T < 300 K. We attribute this behavior to the ballistic transport of acoustic phonons with long intrinsic MFP and the temperature dependence of the heat capacity. Our findings, which are in qualitative agreement with the temperature trend of thermal conductivities measured in nanoporous Si-based systems, shed light on the origin of the reduction of thermal conductivity in nanostructured materials and demonstrate the necessity of multiscale heat transport engineering, in which the bulk material and geometry are optimized concurrently.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Science (Solid-State Solar-Thermal Energy Conversion Center Award DE-SC0001299)en_US
dc.description.sponsorshipDeshpande Center for Technological Innovationen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.93.035408en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleTemperature-dependent thermal conductivity in silicon nanostructured materials studied by the Boltzmann transport equationen_US
dc.typeArticleen_US
dc.identifier.citationRomano, Giuseppe, Keivan Esfarjani, David A. Strubbe, David Broido, and Alexie M. Kolpak. “Temperature-Dependent Thermal Conductivity in Silicon Nanostructured Materials Studied by the Boltzmann Transport Equation.” Physical Review B 93, no. 3 (January 5, 2016). © 2016 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorRomano, Giuseppeen_US
dc.contributor.mitauthorStrubbe, Daviden_US
dc.contributor.mitauthorKolpak, Alexie M.en_US
dc.relation.journalPhysical Review Ben_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-01-05T23:00:05Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsRomano, Giuseppe; Esfarjani, Keivan; Strubbe, David A.; Broido, David; Kolpak, Alexie M.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2426-5532
dc.identifier.orcidhttps://orcid.org/0000-0002-4347-0139
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record