Show simple item record

dc.contributor.authorEmanuel, Kerry Andrew
dc.contributor.authorFlierl, Glenn Richard
dc.contributor.authorO'Neill, Morgan E
dc.date.accessioned2016-01-08T03:06:49Z
dc.date.available2016-01-08T03:06:49Z
dc.date.issued2015-06
dc.date.submitted2014-12
dc.identifier.issn1752-0894
dc.identifier.issn1752-0908
dc.identifier.urihttp://hdl.handle.net/1721.1/100773
dc.description.abstractA strong cyclonic vortex has been observed on each of Saturn’s poles, coincident with a local maximum in observed tropospheric temperature. Neptune also exhibits a relatively warm, although much more transient, region on its south pole. Whether similar features exist on Jupiter will be resolved by the 2016 Juno mission. Energetic, small-scale storm-like features that originate from the water-cloud level or lower have been observed on each of the giant planets and attributed to moist convection, suggesting that these storms play a significant role in global heat transfer from the hot interior to space. Nevertheless, the creation and maintenance of Saturn’s polar vortices, and their presence or absence on the other giant planets, are not understood. Here we use simulations with a shallow-water model to show that storm generation, driven by moist convection, can create a strong polar cyclone throughout the depth of a planet’s troposphere. We find that the type of shallow polar flow that occurs on a giant planet can be described by the size ratio of small eddies to the planetary radius and the energy density of its atmosphere due to latent heating from moist convection. We suggest that the observed difference in these parameters between Saturn and Jupiter may preclude a Jovian polar cyclone.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowshipen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (ATM-0850639)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (AGS-1032244)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (AGS-1136480)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (N00014-14-1-0062)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ngeo2459en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceO'Neillen_US
dc.titlePolar vortex formation in giant planet atmospheres under moist convectionen_US
dc.title.alternativePolar vortex formation in giant-planet atmospheres due to moist convectionen_US
dc.typeArticleen_US
dc.identifier.citationO’Neill, Morgan E, Kerry A. Emanuel, and Glenn R. Flierl. “Polar Vortex Formation in Giant-Planet Atmospheres Due to Moist Convection.” Nature Geosci 8, no. 7 (June 15, 2015): 523–526.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Program in Atmospheres, Oceans, and Climateen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.approverO'Neill, Morgan E.en_US
dc.contributor.mitauthorO'Neill, Morgan E.en_US
dc.contributor.mitauthorEmanuel, Kerry Andrewen_US
dc.contributor.mitauthorFlierl, Glenn Richarden_US
dc.relation.journalNature Geoscienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsO’Neill, Morgan E; Emanuel, Kerry A.; Flierl, Glenn R.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3589-5249
dc.identifier.orcidhttps://orcid.org/0000-0002-2066-2082
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record