Show simple item record

dc.contributor.authorKijlstra, Jan David
dc.contributor.authorHu, Dongjian
dc.contributor.authorMittal, Nikhil
dc.contributor.authorvan der Meer, Peter
dc.contributor.authorGarakani, Arman
dc.contributor.authorDomian, Ibrahim J.
dc.contributor.authorKausel, Eduardo A.
dc.date.accessioned2016-01-13T17:24:00Z
dc.date.available2016-01-13T17:24:00Z
dc.date.issued2015-11
dc.date.submitted2015-10
dc.identifier.issn22136711
dc.identifier.urihttp://hdl.handle.net/1721.1/100811
dc.description.abstractThe quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening.en_US
dc.description.sponsorshipNational Heart, Lung, and Blood Institute (Grant U01HL100408-01)en_US
dc.description.sponsorshipNational Heart, Lung, and Blood Institute (Grant 1K08 HL091209)en_US
dc.description.sponsorshipDutch Heart Foundation (Grant 2013SB013)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.stemcr.2015.10.017en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleIntegrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytesen_US
dc.typeArticleen_US
dc.identifier.citationKijlstra, Jan David, Dongjian Hu, Nikhil Mittal, Eduardo Kausel, Peter van der Meer, Arman Garakani, and Ibrahim J. Domian. “Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes.” Stem Cell Reports 5, no. 6 (December 2015): 1226–1238.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.mitauthorKausel, Eduardo A.en_US
dc.relation.journalStem Cell Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKijlstra, Jan David; Hu, Dongjian; Mittal, Nikhil; Kausel, Eduardo; van der Meer, Peter; Garakani, Arman; Domian, Ibrahim J.en_US
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record