On the surface impact of Arctic stratospheric ozone extremes
Author(s)
Calvo, N.; Polvani, L. M.; Solomon, Susan
DownloadCalvo-2015-On the surface impac.pdf (2.237Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
A comprehensive stratosphere-resolving atmospheric model, with interactive stratospheric ozone chemistry, coupled to ocean, sea ice and land components is used to explore the tropospheric and surface impacts of large springtime ozone anomalies in the Arctic stratosphere. Coupling between the Antarctic ozone hole and Southern Hemisphere climate has been identified in numerous studies, but connections of Arctic ozone loss to surface climate have been more difficult to elucidate. Analyzing an ensemble of historical integrations with all known natural and anthropogenic forcings specified over the period 1955–2005, we find that extremely low stratospheric ozone changes are able to produce large and robust anomalies in tropospheric wind, temperature and precipitation in April and May over large portions of the Northern Hemisphere (most notably over the North Atlantic and Eurasia). Further, these ozone-induced surface anomalies are obtained only in the last two decades of the 20th century, when high concentrations of ozone depleting substances generate sufficiently strong stratospheric temperature anomalies to impact the surface climate. Our findings suggest that coupling between chemistry and dynamics is essential for a complete representation of surface climate variability and climate change not only in Antarctica but also in the Arctic.
Date issued
2015-09Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary SciencesJournal
Environmental Research Letters
Publisher
IOP Publishing
Citation
Calvo, N, L M Polvani, and S Solomon. “On the Surface Impact of Arctic Stratospheric Ozone Extremes.” Environmental Research Letters 10, no. 9 (September 1, 2015): 094003. © 2015 IOP Publishing Ltd
Version: Final published version
ISSN
1748-9326