MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Genomically encoded analog memory with precise in vivo DNA writing in living cell populations

Author(s)
Farzadfard, Fahim; Lu, Timothy K
Thumbnail
DownloadLu_Genomically encoded.pdf (1.491Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Cellular memory is crucial to many natural biological processes and sophisticated synthetic biology applications. Existing cellular memories rely on epigenetic switches or recombinases, which are limited in scalability and recording capacity. In this work, we use the DNA of living cell populations as genomic “tape recorders” for the analog and distributed recording of long-term event histories. We describe a platform for generating single-stranded DNA (ssDNA) in vivo in response to arbitrary transcriptional signals. When coexpressed with a recombinase, these intracellularly expressed ssDNAs target specific genomic DNA addresses, resulting in precise mutations that accumulate in cell populations as a function of the magnitude and duration of the inputs. This platform could enable long-term cellular recorders for environmental and biomedical applications, biological state machines, and enhanced genome engineering strategies.
Date issued
2014-11
URI
http://hdl.handle.net/1721.1/100835
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Microbiology Graduate Program; Massachusetts Institute of Technology. Research Laboratory of Electronics; Massachusetts Institute of Technology. Synthetic Biology Center
Journal
Science
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Farzadfard, F., and T. K. Lu. “Genomically Encoded Analog Memory with Precise in Vivo DNA Writing in Living Cell Populations.” Science 346, no. 6211 (November 13, 2014): 1256272–1256272.
Version: Author's final manuscript
ISSN
0036-8075
1095-9203

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.