Show simple item record

dc.contributor.authorVartak, Manasi
dc.contributor.authorRahman, Sajjadur
dc.contributor.authorParameswaran, Aditya
dc.contributor.authorPolyzotis, Neoklis
dc.contributor.authorMadden, Samuel R.
dc.date.accessioned2016-01-19T03:31:40Z
dc.date.available2016-01-19T03:31:40Z
dc.date.issued2015-09
dc.identifier.issn21508097
dc.identifier.urihttp://hdl.handle.net/1721.1/100921
dc.description.abstractData analysts often build visualizations as the first step in their analytical workflow. However, when working with high-dimensional datasets, identifying visualizations that show relevant or desired trends in data can be laborious. We propose SeeDB, a visualization recommendation engine to facilitate fast visual analysis: given a subset of data to be studied, SeeDB intelligently explores the space of visualizations, evaluates promising visualizations for trends, and recommends those it deems most "useful" or "interesting". The two major obstacles in recommending interesting visualizations are (a) scale: evaluating a large number of candidate visualizations while responding within interactive time scales, and (b) utility: identifying an appropriate metric for assessing interestingness of visualizations. For the former, SeeDB introduces pruning optimizations to quickly identify high-utility visualizations and sharing optimizations to maximize sharing of computation across visualizations. For the latter, as a first step, we adopt a deviation-based metric for visualization utility, while indicating how we may be able to generalize it to other factors influencing utility. We implement SeeDB as a middleware layer that can run on top of any DBMS. Our experiments show that our framework can identify interesting visualizations with high accuracy. Our optimizations lead to multiple orders of magnitude speedup on relational row and column stores and provide recommendations at interactive time scales. Finally, we demonstrate via a user study the effectiveness of our deviation-based utility metric and the value of recommendations in supporting visual analytics.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant IIS-1513407)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant IIS-1513443)en_US
dc.description.sponsorshipIntel Corporation. Science and Technology Center for Big Dataen_US
dc.description.sponsorshipNational Institute of General Medical Sciences (U.S.) (Grant 1U54GM114838)en_US
dc.description.sponsorshipGoogle (Firm)en_US
dc.description.sponsorshipIntel Corporationen_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.14778/2831360.2831371en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleSeeDB: efficient data-driven visualization recommendations to support visual analyticsen_US
dc.typeArticleen_US
dc.identifier.citationManasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, and Neoklis Polyzotis. 2015. SeeDB: efficient data-driven visualization recommendations to support visual analytics. Proc. VLDB Endow. 8, 13 (September 2015), 2182-2193.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorVartak, Manasien_US
dc.contributor.mitauthorMadden, Samuel R.en_US
dc.relation.journalProceedings of the VLDB Endowmenten_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsVartak, Manasi; Rahman, Sajjadur; Madden, Samuel; Parameswaran, Aditya; Polyzotis, Neoklisen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7470-3265
dc.identifier.orcidhttps://orcid.org/0000-0002-5759-698X
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record