MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Multigrid Method for Adaptive Sparse Grids

Author(s)
Peherstorfer, Benjamin; Zimmer, Stefan; Zenger, Christoph; Bungartz, Hans-Joachim
Thumbnail
DownloadPeherstorfer-2015-Multigrid method.pdf (1.008Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Sparse grids have become an important tool to reduce the number of degrees of freedom of discretizations of moderately high-dimensional partial differential equations; however, the reduction in degrees of freedom comes at the cost of an almost dense and unconventionally structured system of linear equations. To guarantee overall efficiency of the sparse grid approach, special linear solvers are required. We present a multigrid method that exploits the sparse grid structure to achieve an optimal runtime that scales linearly with the number of sparse grid points. Our approach is based on a novel decomposition of the right-hand sides of the coarse grid equations that leads to a reformulation in so-called auxiliary coefficients. With these auxiliary coefficients, the right-hand sides can be represented in a nodal point basis on low-dimensional full grids. Our proposed multigrid method directly operates in this auxiliary coefficient representation, circumventing most of the computationally cumbersome sparse grid structure. Numerical results on nonadaptive and spatially adaptive sparse grids confirm that the runtime of our method scales linearly with the number of sparse grid points and they indicate that the obtained convergence factors are bounded independently of the mesh width.
Date issued
2015-10
URI
http://hdl.handle.net/1721.1/100938
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
SIAM Journal on Scientific Computing
Publisher
Society for Industrial and Applied Mathematics
Citation
Peherstorfer, Benjamin, Stefan Zimmer, Christoph Zenger, and Hans-Joachim Bungartz. “A Multigrid Method for Adaptive Sparse Grids.” SIAM Journal on Scientific Computing 37, no. 5 (January 2015): S51–S70. © 2015 Society for Industrial and Applied Mathematics
Version: Final published version
ISSN
1064-8275
1095-7197

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.