Show simple item record

dc.contributor.authorMonich, Ullrich
dc.contributor.authorGrgicak, Catherine
dc.contributor.authorCadambe, Viveck
dc.contributor.authorWellner, Genevieve
dc.contributor.authorDuffy, Ken
dc.contributor.authorMedard, Muriel
dc.contributor.authorWu, Yonglin
dc.date.accessioned2016-01-20T17:01:29Z
dc.date.available2016-01-20T17:01:29Z
dc.date.issued2014-11
dc.identifier.isbn978-1-4799-8297-4
dc.identifier.isbn978-1-4799-8295-0
dc.identifier.urihttp://hdl.handle.net/1721.1/100950
dc.description.abstractFor forensic purposes, short tandem repeat allele signals are used as DNA fingerprints. The interpretation of signals measured from samples has traditionally been conducted by applying thresholding. More quantitative approaches have recently been developed, but not for the purposes of identifying an appropriate signal model. By analyzing data from 643 single person samples, we develop such a signal model. Three standard classes of two-parameter distributions, one symmetric (normal) and two right-skewed (gamma and log-normal), were investigated for their ability to adequately describe the data. Our analysis suggests that additive noise is well modeled via the log-normal distribution class and that variability in peak heights is well described by the gamma distribution class. This is a crucial step towards the development of principled techniques for mixed sample signal deconvolution.en_US
dc.description.sponsorshipUnited States. Dept. of Justice. National Institute of Justice (2012-DN-BX-K050)en_US
dc.language.isoen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ACSSC.2014.7094478en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleA signal model for forensic DNA mixturesen_US
dc.typeArticleen_US
dc.identifier.citationMonich, Ullrich J., Catherine Grgicak, Viveck Cadambe, Jason Yonglin Wu, Genevieve Wellner, Ken Duffy, and Muriel Medard. “A Signal Model for Forensic DNA Mixtures.” 2014 48th Asilomar Conference on Signals, Systems and Computers (November 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorMonich, Ullrichen_US
dc.contributor.mitauthorWu, Yonglinen_US
dc.contributor.mitauthorMedard, Murielen_US
dc.relation.journalProceedings of the 2014 48th Asilomar Conference on Signals, Systems and Computersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsMonich, Ullrich J.; Grgicak, Catherine; Cadambe, Viveck; Wu, Jason Yonglin; Wellner, Genevieve; Duffy, Ken; Medard, Murielen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4059-407X
dc.identifier.orcidhttps://orcid.org/0000-0001-8982-6615
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record