Show simple item record

dc.contributor.authorCalmon, Flavio P.
dc.contributor.authorVaria, Mayank
dc.contributor.authorMedard, Muriel
dc.date.accessioned2016-01-20T17:13:09Z
dc.date.available2016-01-20T17:13:09Z
dc.date.issued2014-11
dc.identifier.isbn978-1-4799-5999-0
dc.identifier.issn1662-9019
dc.identifier.urihttp://hdl.handle.net/1721.1/100951
dc.description.abstractThe principal inertia components of the joint distribution of two random variables X and Y are inherently connected to how an observation of Y is statistically related to a hidden variable X. In this paper, we explore this connection within an information theoretic framework. We show that, under certain symmetry conditions, the principal inertia components play an important role in estimating one-bit functions of X, namely f(X), given an observation of Y. In particular, the principal inertia components bear an interpretation as filter coefficients in the linear transformation of p[subscript f(X)|X] into p[subscript f(X)|Y]. This interpretation naturally leads to the conjecture that the mutual information between f(X) and Y is maximized when all the principal inertia components have equal value. We also study the role of the principal inertia components in the Markov chain B → X → Y → B̂, where B and B̂ are binary random variables. We illustrate our results for the setting where X and Y are binary strings and Y is the result of sending X through an additive noise binary channel.en_US
dc.description.sponsorshipUnited States. Intelligence Advanced Research Projects Activity (United States. Air Force Contract FA8721-05-C-002)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ITW.2014.6970831en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleAn exploration of the role of principal inertia components in information theoryen_US
dc.typeArticleen_US
dc.identifier.citationCalmon, Flavio P., Mayank Varia, and Muriel Medard. “An Exploration of the Role of Principal Inertia Components in Information Theory.” 2014 IEEE Information Theory Workshop (ITW 2014) (November 2014).en_US
dc.contributor.departmentLincoln Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorCalmon, Flavio P.en_US
dc.contributor.mitauthorVaria, Mayanken_US
dc.contributor.mitauthorMedard, Murielen_US
dc.relation.journalProceedings of the 2014 IEEE Information Theory Workshop (ITW 2014)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsCalmon, Flavio P.; Varia, Mayank; Medard, Murielen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2912-7972
dc.identifier.orcidhttps://orcid.org/0000-0003-4059-407X
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record