MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Singular behavior of jet substructure observables

Author(s)
Larkoski, Andrew J.; Moult, Ian James
Thumbnail
DownloadPhysRevD.93.014017.pdf (1.466Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Jet substructure observables play a central role at the Large Hadron Collider for identifying the boosted hadronic decay products of electroweak scale resonances. The complete description of these observables requires understanding both the limit in which hard substructure is resolved, as well as the limit of a jet with a single hard core. In this paper we study in detail the perturbative structure of two prominent jet substructure observables, N-subjettiness and the energy correlation functions, as measured on background QCD jets. In particular, we focus on the distinction between the limits in which two-prong structure is resolved or unresolved. Depending on the choice of subjet axes, we demonstrate that at fixed order, N-subjettiness can manifest myriad behaviors in the unresolved region: smooth tails, end point singularities, or singularities in the physical region. The energy correlation functions, by contrast, only have nonsingular perturbative tails extending to the end point. We discuss the effect of hadronization on the various observables with Monte Carlo simulation and demonstrate that the modeling of these effects with nonperturbative shape functions is highly dependent on the N-subjettiness axes definitions. Our study illustrates those regions of phase space that must be controlled for high-precision jet substructure calculations, and emphasizes how such calculations can be facilitated by designing substructure observables with simple singular structures.
Date issued
2016-01
URI
http://hdl.handle.net/1721.1/100973
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review D
Publisher
American Physical Society
Citation
Larkoski, Andrew J., and Ian Moult. "Singular behavior of jet substructure observables." Phys. Rev. D 93, 014017 (January 2016). © 2016 American Physical Society
Version: Final published version
ISSN
1550-7998
1550-2368

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.