BosonSampling with lost photons
Author(s)
Aaronson, Scott; Brod, Daniel J.
DownloadPhysRevA.93.012335.pdf (129.8Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
BosonSampling is an intermediate model of quantum computation where linear-optical networks are used to solve sampling problems expected to be hard for classical computers. Since these devices are not expected to be universal for quantum computation, it remains an open question of whether any error-correction techniques can be applied to them, and thus it is important to investigate how robust the model is under natural experimental imperfections, such as losses and imperfect control of parameters. Here, we investigate the complexity of BosonSampling under photon losses, more specifically, the case where an unknown subset of the photons is randomly lost at the sources. We show that if k out of n photons are lost, then we cannot sample classically from a distribution that is 1/n[superscript Θ(k)] close (in total variation distance) to the ideal distribution, unless a BPP[superscript NP] machine can estimate the permanents of Gaussian matrices in n[superscript O(k)] time. In particular, if k is constant, this implies that simulating lossy BosonSampling is hard for a classical computer, under exactly the same complexity assumption used for the original lossless case.
Date issued
2016-01Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Physical Review A
Publisher
American Physical Society
Citation
Aaronson, Scott, and Daniel J. Brod. "BosonSampling with lost photons." Phys. Rev. A 93, 012335 (January 2016). © 2016 American Physical Society
Version: Final published version
ISSN
1050-2947
1094-1622