MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lower bounds on nonnegative rank via nonnegative nuclear norms

Author(s)
Fawzi, Hamza; Parrilo, Pablo A.
Thumbnail
DownloadParrilo_Lower bounds.pdf (245.1Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The nonnegative rank of an entrywise nonnegative matrix A ∈ R[m×n over +] is the smallest integer r such that A can be written as A = UV where U ∈ R[m×r over +] and V ∈ R[r×n over +] are both nonnegative. The nonnegative rank arises in different areas such as combinatorial optimization and communication complexity. Computing this quantity is NP-hard in general and it is thus important to find efficient bounding techniques especially in the context of the aforementioned applications. In this paper we propose a new lower bound on the nonnegative rank which, unlike most existing lower bounds, does not solely rely on the matrix sparsity pattern and applies to nonnegative matrices with arbitrary support. The idea involves computing a certain nuclear norm with nonnegativity constraints which allows to lower bound the nonnegative rank, in the same way the standard nuclear norm gives lower bounds on the standard rank. Our lower bound is expressed as the solution of a copositive programming problem and can be relaxed to obtain polynomial-time computable lower bounds using semidefinite programming. We compare our lower bound with existing ones, and we show examples of matrices where our lower bound performs better than currently known ones.
Date issued
2014-11
URI
http://hdl.handle.net/1721.1/100983
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
Mathematical Programming
Publisher
Springer-Verlag
Citation
Fawzi, Hamza, and Pablo A. Parrilo. “Lower Bounds on Nonnegative Rank via Nonnegative Nuclear Norms.” Math. Program. 153, no. 1 (November 12, 2014): 41–66.
Version: Author's final manuscript
ISSN
0025-5610
1436-4646

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.