Peak-to-Average Power Ratio of Good Codes for Gaussian Channel
Author(s)
Polyanskiy, Yury; Wu, Yihong
DownloadPolyansky_Peak-to-average.pdf (138.9Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Consider a problem of forward error-correction for the additive white Gaussian noise (AWGN) channel. For finite blocklength codes, the backoff from the channel capacity is inversely proportional to the square root of the blocklength. In this paper, it is shown that the codes achieving this tradeoff must necessarily have peak-to-average power ratio (PAPR) proportional to logarithm of the blocklength. This is extended to codes approaching capacity slower, and to PAPR measured at the output of an orthogonal frequency division multiplexing modulator. As a by-product, the convergence of (Smith's) amplitude-constrained AWGN capacity to Shannon's classical formula is characterized in the regime of large amplitudes. This converse-type result builds upon recent contributions in the study of empirical output distributions of good channel codes.
Date issued
2014-11Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
IEEE Transactions on Information Theory
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Polyanskiy, Yury, and Yihong Wu. “Peak-to-Average Power Ratio of Good Codes for Gaussian Channel.” IEEE Transactions on Information Theory 60, no. 12 (December 2014): 7655–7660.
Version: Original manuscript
ISSN
0018-9448
1557-9654