MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Orthogonal designs optimize achievable dispersion for coherent MISO channels

Author(s)
Polyanskiy, Yury; Collins, Austin Daniel
Thumbnail
DownloadPolyansky_Orthogonal designs.pdf (284.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This work addresses the question of finite block-length fundamental limits of coherently demodulated multi-antenna channels, subject to frequency non-selective isotropic fading. Specifically we present achievability bound for the channel dispersion - a quantity known to determine the delay required to achieve capacity. It is shown that a commonly used isotropic Gaussian input, which is only one of many possible capacity achieving distributions, is suboptimal. Optimal inputs minimizing channel dispersion turn out to include a family of modulation techniques known as orthogonal designs (in particular, Alamouti's scheme). For 8 transmit antennas numerical evaluation shows that up to 40% of additional penalty in delay is incurred by using isotropic codewords (compared to dispersion-optimal architecture exploiting transmit diversity).
Date issued
2014-06
URI
http://hdl.handle.net/1721.1/100993
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 2014 IEEE International Symposium on Information Theory
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Collins, Austin, and Yury Polyanskiy. “Orthogonal Designs Optimize Achievable Dispersion for Coherent MISO Channels.” 2014 IEEE International Symposium on Information Theory (June 2014).
Version: Author's final manuscript
ISBN
978-1-4799-5186-4

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.